Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 13 | 1 |

Article title

Oscillation of fractional order functional differential equations
with nonlinear damping

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, we are concerned with the oscillatory
behavior of a class of fractional differential equations
with functional terms. The fractional derivative is defined
in the sense of the modified Riemann-Liouville derivative.
Based on a certain variable transformation, by using a generalized
Riccati transformation, generalized Philos type
kernels, and averaging techniques we establish new interval
oscillation criteria. Illustrative examples are also given.

Publisher

Journal

Year

Volume

13

Issue

1

Physical description

Dates

received
14 - 11 - 2015
accepted
27 - 11 - 2015
online
31 - 12 - 2015

Contributors

  • Department of health
    Sciences, Uskudar University, Uskudar, Istanbul, Turkey
  • Department of Mathematical Engineering,
    Yildiz Technical University Istanbul, Turkey
  • Department of Mathematics, Amasya University,
    Amasya, Turkey

References

  • [1] S. Das, Functional Fractional Calculus for System Identificationand Controls, Springer, New York (2008)
  • [2] K. Diethelm, A. Freed, On the solution of nonlinear fractionalorder differential equations used in the modeling of viscoplasticity,In: F. Keil, W. Mackens, H. Vob, J. Werther (Eds.) Scientific Computing in Chemical Engineering II: ComputationalFluid Dynamics, Reaction Engineering and Molecular Properties,Springer, Heidelberg (1999), 217-224
  • [3] L. Gaul, P. Klein, S. Kempfle, Mech. Syst. Signal Process. 5, 81(1991)
  • [4] W. Glöckle, T. Nonnenmacher, Biophys. J. 68, 46 (1995)
  • [5] F. Mainardi, Fractional calculus: some basic problems in continuumand statistical mechanics, In: A. Carpinteri, F. Mainardi(Eds.), Fractals and Fractional Calculus in Continuum Mechanics,Springer, Vienna (1997), 291-348 .
  • [6] R. Metzler,W. Schick, H. Kilian, T. Nonnenmacher, J. Chem. Phys.103, 7180 (1995)
  • [7] K. Diethelm, The Analysis of Fractional Differential Equations,Springer, Berlin (2010)[WoS]
  • [8] K. Miller, B. Ross, An Introduction to the Fractional Calculus andFractional Differential Equations, Wiley, New York (1993)
  • [9] I. Podlubny, Fractional Differential Equations, Academic Press,San Diego (1999)
  • [10] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications ofFractional Differential Equations, Elsevier, Amsterdam (2006)
  • [11] D. Delbosco, L. Rodino, J. Math. Anal. Appl. 204, 609 (1996)
  • [12] Z. Bai, H. Lü, J. Math. Anal. Appl. 311, 495 (2005)
  • [13] H. Jafari, V. Daftardar-Gejji, Appl. Math. Comput. 180, 700(2006)
  • [14] S. Sun, Y. Zhao, Z. Han, Y. Li, Commun. Nonlinear Sci. Numer.Simul. 17, 4961 (2012)
  • [15] M. Muslim, Math. Comput. Model. 49, 1164 (2009)
  • [16] A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326(2010)
  • [17] F. Ghoreishi, S. Yazdani, Comput. Math. Appl. 61, 30 (2011)
  • [18] J. Edwards, N. Ford, A. Simpson, J. Comput. Appl.Math. 148, 401(2002)
  • [19] L. Galeone, R. Garrappa, J. Comput. Appl.Math. 228, 548 (2009)
  • [20] J. Trigeassou, N.Maamri, J.A. Sabatier, A. Oustaloup, Signal Process.91, 437 (2011)
  • [21] W. Deng, Nonlinear Anal. 72, 1768 (2010)
  • [22] R.P. Agarwal, S.R. Grace, D. O’Regan, Oscillation Theory forSecond Order Linear, Half Linear, Super Linear and Sub LinearDynamic Equations, Kluwer Academic Publishers, The Netherlands,672pp. (2002)
  • [23] R.P. Agarwal, M. Bohner, L. Wan-Tong, Nonoscillation and Oscillation:Theory for Functional Differential Equations, MarcelDekker Inc., New York, 376pp. (2004)
  • [24] G. Jumarie, Comput. Math. Appl. 51, 1367 (2006)
  • [25] G. Jumarie, Appl. Math. Lett. 22, 378 (2009)[Crossref]
  • [26] N. Faraz, Y. Khan, H. Jafari, A. Yildirim, M. Madani, J. King. SaudUniv. 23, 413 (2011)
  • [27] B. Lu, Phys. Lett. A 376, 2045 (2012)
  • [28] Q. Feng, F. Meng, Electr. J. Differ. Equ. 2013, 1 (2013)
  • [29] T. Liu, B. Zheng, F. Meng,Math. Probl. Eng. 2013, 830836 (2013)
  • [30] H. Qin, B. Zheng, Scientific World J. 2013, 685621 (2013)
  • [31] Q. Feng, IAENG IJAM 43, IJAM_43_3_09 (2013)
  • [32] S.M. Guo, L. Mei, Y. Li, Y.F. Sun, Phys. Lett. A 376, 407 (2012)
  • [33] S. Zhang, H. Zhang, Phys. Lett. A 375, 1069 (2011)
  • [34] Y. Huang, F. Meng, Appl. Math. Comput. 199, 644 (2008)
  • [35] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, second ed.,Cambridge University Press, Cambridge (1988)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_phys-2015-0053
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.