Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 2 | 1 |

Article title

Functional investigation of Bacillus subtilis YrkF’s
involvement in sulfur transfer reactions

Content

Title variants

Languages of publication

EN

Abstracts

EN
Sulfur incorporation into the molybdenum
cofactor (Moco) in the Gram-negative bacterium
Escherichia coli involves six enzymes. The initial
reaction includes the cysteine desulfurase IscS, the
sulfurtransferase TusA, and the rhodanese domaincontaining
protein YnjE. The Gram-positive bacterium
Bacillus subtilis contains no direct homologs for IscS,
but rather four distinct cysteine desulfurases (YrvO, NifS,
NifZ, SufS) and YrkF, a two-domain rhodanese protein
with an N-terminal domain similar to TusA. Bioinformatic
analysis was used to identify potential enzymes involved
in the B. subtilis Moco thiolation pathway and in vitro
reactions demonstrated that YrkF can accept sulfur from
and enhance the activity of YrvO.

Publisher

Journal

Year

Volume

2

Issue

1

Physical description

Dates

online
20 - 1 - 2016
accepted
5 - 12 - 2015
received
6 - 8 - 2015

Contributors

  • Department of Chemistry,
    Wake Forest University
  • Department of Chemistry,
    Wake Forest University
  • Wake Forest University,
    1834 Wake Forest Road, Winston Salem, North Carolina, 27106

References

  • [1] Schwarz G., Mendel R.R., Ribbe M.W., Molybdenum cofactors,enzymes and pathways, Nature, 2009, 460, 839-847.[WoS]
  • [2] Rajagopalan K.V., Johnson J.L., Hainline B.E., The pterin of themolybdenum cofactor, Federation Proceedings, 1982, 41 (9),2608-2612.
  • [3] Hille R., The mononuclear molybdenum enzymes, ChemicalReviews, 1996, 96 (7), 2757-2816.[WoS]
  • [4] Leimkühler S., The Biosynthesis of the Molybdenum Cofactor inEscherichia coli and Its Connection to FeS Cluster Assembly andthe Thiolation of tRNA, Advances in Biology, 2014, vol. 2014,Article 808569.
  • [5] Hille R., Nishino T., Bittner F., Molybdenum enzymes in higherorganisms, Coord. Chem. Review, 2011, 255, 1179-1205.
  • [6] Wuebbens M.M., Rajagopalan K. V., Structural characterizationof a molybdopterin precursor, The Journal of BiologicalChemistry, 1993, 268 (18), 13493-13498.
  • [7] Llamas A., Mendel R.R., Schwarz G., Synthesis of adenylatedmolybdopterin: an essential step for molybdenum insertion,The Journal of Biological Chemistry, 2004, 279 (53),55241-55246.
  • [8] Leimkühler S., Wuebbens M.M., Rajagopalan K.V., The historyof the discovery of the molybdenum cofactor and novel aspectsof its biosynthesis in bacteria, Coord. Chem. Rev., 2011, 255,1129-1144.[WoS]
  • [9] Pitterle D.M., Johnson J.L., Rajagopalan K.V., In vitro synthesisof molybdenum from precursor Z using purified convertingfactor. Role of protein-bound Sulfur in formation of thedithiolene, The Journal of Biological Chemistry, 1993, 268 (18),13506-13509.
  • [10] Dahl J.U., Radon C., Bühning M., Nimtz M., Leichert L., Denis Y.,Jourlin-Castelli C., Iobbi-Nivol C., Mejean V., Leimkühler S., TheSulfur carrier protein TusA has a pleiotropic role in Escherichiacoli that also affects molybdenum cofactor biosynthesis, TheJournal of Biological Chemistry, 2013, 288, 5426-5442.[WoS]
  • [11] Leimkühler S., Rajagopalan K.V., A sulfurtransferase is requiredin the transfer of cysteine sulfur in the in vitro synthesis ofmolybdopterin from precursor Z in Escherichia coli, The Journalof Biological Chemistry, 2001, 276 (25), 22024-22031.
  • [12] Dahl J.U., Urban A., Bolte A., Sriyabhaya P., Donahue J., NimtzM., Larson T.J., Leimkühler S., The identification of a novelprotein involved in molybdenum cofactor biosynthesis inEscherichia coli, The Journal of Biological Chemistry, 2011, 286(41), 35801-35812.
  • [13] Leimkühler S., Wuebbens M.M., Rajagopalan K.V., Characterizationof Escherichia coli MoeB and its involvement in theactivation of molybdopterin synthase for the biosynthesis ofthe molybdenum cofactor, The Journal of Biological Chemistry,2001, 276 (37), 34965-34701.
  • [14] Gutzke G., Fischer B., Mendel R. R., Schwarz G. Thiocarboxylationof molybdopterin synthase provides evidence for themechanism of dithiolene formation in metal-binding pterins.The Journal of Biological Chemistry, 2001, 276, 36268–36274.
  • [15] Mendel R.R., Leimkühler S.L. The biosynthesis of themolybdenum cofactors. Journal of Biological Inorganic.Chemistry, 2015, 20, 2, 337-347.[WoS]
  • [16] Black K.A., Dos Santos P.C., Abbreviated Pathway forBiosynthesis of 2-Thiouridine in Bacillus subtils, Journal ofBacteriology, 2015, 197, 1952-1962.[WoS]
  • [17] Selbach B., Earles E., Dos Santos P.C., Kinetic analysis of thebisubstrate cysteine desulfurase SufS from Bacillus subtilis,Biochemistry, 2010, 49 (40), 8794-8802.[WoS]
  • [18] Rajakovich L.J., Tomlinson J., Dos Santos P.C., Functionalanalysis of Bacillus subtilis genes involved in the biosynthesisof 4-thiouridine in tRNA, 2012, Journal of Bacteriology 194,4933-4940.
  • [19] Black K.A., Dos Santos P.C., Shared-intermediates in thebiosynthesis of thio-cofactors: Mechanism and functions ofcysteine desulfurases and sulfur acceptors, Biochimica etBiophysica Acta, 2015, 1853, 1470-1480.[WoS]
  • [20] Ikeuchi Y., Shigi N., Kato J., Nishimura A., Suzuki T.,Mechanistic insights into sulfur relay by multiple sulfurmediators involved in thiouridine biosynthesis at tRNA wobblepositions, Mol Cell, 2006, 21, 97-108.
  • [21] Lauhon CT., Requirement for IscS in biosynthesis of all thionucleosidesin Escherichia coli. Journal of Bacteriology, 2002, 184,6820-6829.
  • [22] Zheng L., White R.H., Cash V.L., Jack R.F. Dean D.R., Cysteinedesulfurase activity indicates a role for NIFS in metalloclusterbiosynthesis, Proc Natl Acad Sci USA, 1993, 90, 2754-2758.
  • [23] Selbach BP, Chung AH, Scott AD, George SJ, Cramer SP, DosSantos PC. Fe-S Cluster Biogenesis in Gram-Positive Bacteria:SufU Is a Zinc-Dependent Sulfur Transfer Protein. Biochemistry,2014, 53, 152-160.[WoS]
  • [24] Dos Santos P.C. Fe-S assembly in Gram-positive bacteria,chapter in Iron Sulfur Clusters in Chemistry and Biology, VerlagWalter de Gruyter, Tracey Rouault (editor), 2014, chapter 14,347-366.
  • [25] Hunt J., Genetic and biochemical characterization of YrkF,a novel two-domain sulfurtransferase in Bacillus subtilis,Master’s thesis, Virginia Polytechnic Institute and StateUniversity, Blacksburg, Virginia, 2004.
  • [26] Cartini F., Remelli W., Dos Santos P.C., Papenbrock J., PaganiS., Forlani F. Mobilization of sulfane sulfur from cysteinedesulfurases to the Azotobacter vinelandii sulfurtransferaseRhdA. Amino Acids, 2010, 41, 141-150.[WoS]
  • [27] Numata T., Ikeuchi Y., Fukai S., Suzuki T., Nureki O., Snapshotsof tRNA sulphuration via an adenylated intermediate, Nature,2006, 4442, 419-424.
  • [28] Shi R., Proteau A., Villarroa M., Moukadiri I., Zhang L., TrempeJ.F., Matte A., Armengood M.E., Cygler M., Structural Basisfor Fe-S Cluster Assembly and tRNA Thiolation Mediated byIscS Protein-Protein Interactions, 2010, PLoS Biology 8(4):e1000354.[Crossref][WoS]
  • [29] Selbach, B., Pradhan P., Dos Santos P.C., Protected SulfurTransfer Reactions by the Escherichia coli Suf System,Biochemistry, 2013, 52, 4089-4096.[WoS]
  • [30] Dai Y., Outten F.W., The E. coli SufS-SufE sulfur transfer systemis more resistant to oxidative stress than IscS-IscU, FEBSletters, 2012, 586(22), 4016-4022.[WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_ped-2015-0008
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.