Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 3 | 395-398

Article title

The dynamics of the surface layer of lipid membranes doped by vanadium complex: computer modeling and EPR studies

Content

Title variants

Languages of publication

EN

Abstracts

EN
Penetration of the liposome membranes doped with vanadium complex formed in the liquid-crystalline phase from egg yolk lecithin (EYL) by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) spin probes has been investigated. The penetration process was followed by 360 hours at 24°C, using the electron spin resonance (EPR) method. The spectroscopic parameter of the partition (F) of this probe indicated that a maximum rigidity of the membrane was at 3% concentration of the vanadium complex. Computer simulations showed that the increase in the rigidity of the membrane corresponds to the closure of gaps in the surface layer of the membrane, and indicates the essential role of the membrane surface in transport processes.

Publisher

Journal

Year

Volume

60

Issue

3

Pages

395-398

Physical description

Dates

published
1 - 7 - 2015
accepted
16 - 4 - 2015
received
20 - 11 - 2014
online
6 - 8 - 2015

Contributors

  • Institute of Physics, Opole University, 48 Oleska Str., 45-052 Opole, Poland
author
  • Institute of Physics, Opole University, 48 Oleska Str., 45-052 Opole, Poland
author
  • Institute of Physics, Opole University, 48 Oleska Str., 45-052 Opole, Poland

References

  • 1. Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science, 175, 720–731.[Crossref]
  • 2. Kuczera, J. (1983). Wpływ amfifilowych detergentów na błony liposomów. Zagadnienia Biofizyki Współczesnej, 8, 53–101.
  • 3. Man, D., Słota, R., Broda, M. A., Mele, G., & Li, J. (2011). Metalloporphyrin intercalation in liposome membranes: ESR study. J. Biol. Inorg. Chem., 16(1), 173–181.[Crossref]
  • 4. Man, D., Olchawa, R., & Kubica, K. (2010). Membrane fluidity and the surface properties of the lipid bilayer: ESR experiment and computer simulation. J. Liposome Res., 20, 211–218.[Crossref]
  • 5. Man, D., & Olchawa, R. (2013). Two-step impact of Amphotericin B AmB on biological membranes. ESR experiment and computer simulations. J. Liposome Res., 23, 327–335.[Crossref]
  • 6. Stigter, D., Mingins, J., & Dill, K. A. (1992). Phospholipid interactions in model membrane systems. Biophys. J., 61, 1616–1629.[Crossref]
  • 7. Raudino, A., & Mauzerall, D. (1986). Dielectric properties of the polar head group region of zwitterionic lipid bilayers. Biophys. J., 50, 441–443.[Crossref]
  • 8. Metropolis, N., Rosenbluth, A. W., & Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087–1092.
  • 9. Shimshick, E. J., & McConnell, H. M. (1973). Lateral phase separation in phospholipid membranes. Biochemistry, 12, 2351–2360.[Crossref]
  • 10. Man, D., Podolak, M., & Olchawa, R. (2001). Computer simulation of the electric interactions between the phospholipid head-groups and ionic admixtures in the membrane surface. Z. Naturforsch., 56, c402–c406.
  • 11. Man, D. (2008). D Fluidity of liposome membranes doped with organic tin compounds: ESR study. J. Liposome Res., 18, 225–234.
  • 12. Podolak, M., & Man, D. (2002). Electric interactions at the lipid membrane surface. Cell. Mol. Biol. Lett., 7, 961–969.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0070
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.