Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 2 | 193-198

Article title

Generation of shock waves in dense plasmas by high-intensity laser pulses

Content

Title variants

Languages of publication

EN

Abstracts

EN
When intense short-pulse laser beams (I > 1022 W/m2, τ < 20 ps) interact with high density plasmas, strong shock waves are launched. These shock waves may be generated by a range of processes, and the relative significance of the various mechanisms driving the formation of these shock waves is not well understood. It is challenging to obtain experimental data on shock waves near the focus of such intense laser–plasma interactions. The hydrodynamics of such interactions is, however, of great importance to fast ignition based inertial confinement fusion schemes as it places limits upon the time available for depositing energy in the compressed fuel, and thereby directly affects the laser requirements. In this manuscript we present the results of magnetohydrodynamic simulations showing the formation of shock waves under such conditions, driven by the j × B force and the thermal pressure gradient (where j is the current density and B the magnetic field strength). The time it takes for shock waves to form is evaluated over a wide range of material and current densities. It is shown that the formation of intense relativistic electron current driven shock waves and other related hydrodynamic phenomena may be expected over time scales of relevance to intense laser–plasma experiments and the fast ignition approach to inertial confinement fusion. A newly emerging technique for studying such interactions is also discussed. This approach is based upon Doppler spectroscopy and offers promise for investigating early time shock wave hydrodynamics launched by intense laser pulses.

Publisher

Journal

Year

Volume

60

Issue

2

Pages

193-198

Physical description

Dates

published
1 - 6 - 2015
received
16 - 6 - 2014
online
22 - 6 - 2015
accepted
31 - 10 - 2014

Contributors

author
  • Plasma Physics and Fusion Group, Department of Physics, University of York, Heslington, York, YO10 5DD, U.K. and Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K., Tel.: 01904 322 276
author
  • Plasma Physics and Fusion Group, Department of Physics, University of York, Heslington, York, YO10 5DD, U.K. and Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K., Tel.: 01904 322 276
  • Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K.
author
  • Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, U.K.
author
  • Tata Institute for Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
author
  • Tata Institute for Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
author
  • Tata Institute for Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
author
  • Tata Institute for Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
  • Tata Institute for Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
  • Plasma Physics Group, Department of Physics, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2BZ, U.K.

References

  • 1. Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, W. M., Perry, M. D., & Mason, R. J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626–1634. .[Crossref]
  • 2. Nuckolls, J., Wood, L., Thiessen, A., & Zimmerman, G. (1972). Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature, 239, 139–142.
  • 3. Tabak, M., Hammer, J., Campbell, H. E. M., & et al. (2001). IL8826B, 1997. Lawrence Livermore National Laboratory patent disclosure. Livermore, CA: Lawrence Livermore National Laboratory.
  • 4. Hatchett, S., & Tabak, M. (2000). Cone focus geometry for fast ignition. In 30th Annual Anomalous Absorption Conference, Ocean City, MD, April 2000.
  • 5. Hatchett, S., Herrmann, M., Tabak, M., & et al. (2001). Developments in design of cone-focused fast ignition. Bull. Am. Phys. Soc., 46, 47.
  • 6. Roth, M., Cowan, T. E., Key, M. H., Hatchett, S. P., Brown, C., Fountain, W., Johnson, J., Pennington, D. M., Snavely, R. A., Wilks, S. C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S. V., Campbell, E. M., Perry, M. D., & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett., 86(3), 436–439.[PubMed]
  • 7. Naumova, N., Schlegel, T., Tikhonchuk, V. T., Labaune, C., Sokolov, I. V., & Mourou, G. (2009). Hole boring in a DT pellet and fast-ion ifnition with ultraintensive laser pulses. Phys. Rev. Lett., 102, 025002.[WoS]
  • 8. Bush, I. A., Robinson, A. P. L., Kingham, R. J., & Pasley, J. (2010). Cavitation and shock wave formation in dense plasmas by relativistic electron beams. Plasma Phys. Control. Fusion, 52, 125007.[WoS]
  • 9. Ziegler, U. (2004). A central-constrained transport scheme for ideal magnetohydrodynamics. J. Comput. Phys., 196, 393–416.
  • 10. Ditmire, T., Shigemori, K., Remington, B. A., Estabrook, K., & Smith, R. A. (2000). The production of strong blast waves through intense laser irradiation of atomic clusters. Astrophys. J. Suppl. Ser., 127, 299.
  • 11. Edwards, M. J., MacKinnon, A. J., Zweiback, J., Shigemori, K., Ryutov, D., Rubenchik, A. M., Keilty, K. A., Liang, E., Remington, B. A., & Ditmire, T. (2001). Investigation of ultrafast laser-driven radiative blast waves. Phys. Rev. Lett., 87, 085004.
  • 12. Akli, K. U., Hansen, S. B., Kemp, A. J., Freeman, R. R., Beg, F. N., Clark, D. C., Chen, S. D., Hey, D., Hatchett, S. P., Highbarger, K., Giraldez, E., Green, J. S., Gregori, G., Lancaster, K. L., Ma, T., Mackinnon, A. J., Norreys, P., Patel, N., Pasley, J., Shearer, C., Stephens, R. B., Stoeckl, C., Storm, M., Theobald, W., Van Woerkom, L. D., Weber, R., & Key, M. H. (2008). Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities. Phys. Rev. Lett., 100, 165002.[WoS]
  • 13. Mondal, S., Lad, A. D., Ahmed, S., Narayanan, V., Pasley, J., Rajeev, P. P., Robinson, A. P. L., & Ravindra Kumar, G. (2010). Doppler spectrometry for ultrafast temporal mapping of density dynamics in laser-induced plasmas. Phys. Rev. Lett., 105, 105002.[WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0056
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.