Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 1 | 137-141

Article title

Influence of annealing temperature on structural and magnetic properties of MnFe2O4 nanoparticles

Content

Title variants

Languages of publication

EN

Abstracts

EN
Nanoparticles of manganese ferrite were obtained by the impregnation of highly ordered mesoporous MCM-41 silica support. The investigated sample contained 20% wt. Fe. The obtained nanocrystallites were strongly dispersed in silica matrix and their size was about 2 nm. The sample annealing at 500°C led to increase of particle size to about 5 nm. The Mössbauer spectroscopy investigations performed at room temperature show on occurrence of MnFe2O4 nanoparticle in superparamagnetic state for the sample annealed in all temperatures. The coexistence of superparamagnetic and ferromagnetic phase was observed at liquid nitrogen temperature. The sample annealed at 400°C and 500°C has bigger manganese ferrite particle and better crystallized structure. One can assign them the discrete hyperfine magnetic field components.

Publisher

Journal

Year

Volume

60

Issue

1

Pages

137-141

Physical description

Dates

published
1 - 3 - 2015
online
12 - 3 - 2015
accepted
18 - 11 - 2014
received
18 - 6 - 2014

Contributors

  • Institute of Physics, M. Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 62 20, Fax: +48 537 61 91
author
  • Institute of Physics, M. Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 62 20, Fax: +48 537 61 91
author
  • Department of Chemical Technology, Faculty of Chemistry, M. Curie-Skłodowska University, 3 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland
  • Institute of Physics, M. Curie-Skłodowska University, 1 M. Curie-Skłodowskiej Sq., 20-031 Lublin, Poland, Tel.: +48 81 537 62 20, Fax: +48 537 61 91

References

  • 1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid–crystal template mechanism. Nature, 359, 710–712.
  • 2. Wingen, A., Anastasievic, N., Hollnagel, A., Werner, D., & Schuth, F. (2000). Fe-MCM-41 as a catalyst for sulfur dioxide oxidation in highly concentrated gases. J. Catal., 193, 248–254. DOI: 10.1006/jcat.2000.2896.[Crossref]
  • 3. Ivashchenko, N. A., Gac, W., Tertykh, V. A., Yanishpolskii, V. V., Khainakov, S. A., Dikhtiarenko, A. V., Pasieczna-Patkowska, A., & Zawadzki, W. (2012). Preparation, characterization and catalytic activity of palladium nanoparticles embedded in the mesoporous silica matrices. World J. Nano Sci. Eng., 2, 117–125. .[Crossref]
  • 4. Sahoo, B., Sahu, S. K., Nayak, S., Dharaa, D., & Pramanik, P. (2012). Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal. Sci. Technol., 2, 1367–1374. DOI: 10.1039/c2cy20026k.[WoS][Crossref]
  • 5. Kumar, C. S. S. R., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev., 63, 789–808. DOI: 10.1016/j.addr.2011.03.008.[WoS][Crossref]
  • 6. Na, B. H. B., Song, I. C., & Hyeon, T. (2009). Inorganic nanoparticles for MRI contrast agents. Adv. Mater., 21, 2133–2148. DOI: 10.1002/adma.200802366.[Crossref]
  • 7. Grün, M., Unger, K. K., Matsumoto, A., & Tsutsumi, K. (1997). Ordered microporous/mesoporous MCM-41 type absorbents: novel routes in synthesis, product, characterisation and specification. In B. McEnaney, J. T. Mays, J. Rouquerol, J. Rodriguez-Reynoso, K. S. W. Sing & K. K. Unger (Eds.), Characterization of porous solids IV (pp. 81–89). London: The Royal Society of Chemistry.
  • 8. Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metall., 1, 22–31.
  • 9. Dhiman, R. L., Taneja, S. P., & Reddy, V. R. (2008). Preparation and characterization of manganese ferrite aluminates. Adv. Condens. Matter Phys., 2008, 1–7. DOI: 10.1155/2008/703479.[WoS][Crossref]
  • 10. Li, J., Yuan, H., Li, G., Liu, Y., & Leng, J. (2010). Cation distribution dependence of magnetic properties of sol-gel prepared MnFe2O4 spinel ferrite nanoparticles. J. Magn. Magn. Mater., 322, 3396–3400. DOI: 10.1016/j.jmmm.2010.06.035.[Crossref]
  • 11. Mørup, S., Topøse, T., & Lipka, J. (1976). Modified theory for Mössbauer spectra of superparamagnetic particles: application to Fe3O4. J. Phys., 12(37), C6-287–C6-289. .[Crossref]
  • 12. Kamali, M. S., Ericsson, T., & Wäppling, R. (2006) Characterization of iron oxide nanoparticles by Mössbauer spectroscopy. Thin Solid Films, 515, 721–723. DOI: 10.1016/j.tsf.2005.12.180.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0029
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.