Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 1 | 87-91

Article title

The influence of thermal annealing on structure and oxidation of iron nanowires

Content

Title variants

Languages of publication

EN

Abstracts

EN
Raman spectroscopy as well as Mössbauer spectroscopy were applied in order to study the phase composition of iron nanowires and its changes, caused by annealing in a neutral atmosphere at several temperatures ranging from 200°C to 800°C. As-prepared nanowires were manufactured via a simple chemical reduction in an external magnetic field. Both experimental techniques proved formation of the surface layer covered by crystalline iron oxides, with phase composition dependent on the annealing temperature (Ta). At higher Ta, hematite was the dominant phase in the nanowires.

Publisher

Journal

Year

Volume

60

Issue

1

Pages

87-91

Physical description

Dates

published
1 - 3 - 2015
online
12 - 3 - 2015
received
18 - 6 - 2014
accepted
2 - 11 - 2014

Contributors

  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 69 Hoża Str., 00-681 Warsaw, Poland
  • Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, Tel.: +48 48 361 7846, Fax: +48 48 361 7075
  • Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, Tel.: +48 48 361 7846, Fax: +48 48 361 7075
author
  • Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan, R.O.C.
author
  • Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan, R.O.C.
  • Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, Tel.: +48 48 361 7846, Fax: +48 48 361 7075
  • Department of Physics, Faculty of Mechanical Engineering, University of Technology and Humanities in Radom, 54 Krasickiego Str., 26-600 Radom, Poland, Tel.: +48 48 361 7846, Fax: +48 48 361 7075
author
  • Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 69 Hoża Str., 00-681 Warsaw, Poland

References

  • 1. Chertok, B., Moffat, B. A., David, A. E., Yu, F., Bergemann, C., Ross, B. D., & Yang, V. C. (2008). Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 29(4), 487–496. DOI: 10.1016/j.biomaterials.2007.08.050.[Crossref][PubMed]
  • 2. Zhang, X. X., Wen, G. H., Huang, S., Dai, L., Gao, R., & Wang, Z. L. (2001). Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J. Magn. Magn. Mater., 231(1), 9–12. DOI: 10.1016/S0304-8853(01)00134-2.[Crossref]
  • 3. Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-catalyzed reactions in organic synthesis. Chem. Rev., 104(12), 6217–6254. DOI: 10.1021/cr040664h.[Crossref]
  • 4. Getzlaff, M., Bansmann, J., & Schonhense, G. (1995). Oxygen on Fe(100) and Fe(110). Fresenius J. Anal. Chem., 353(5/8), 743–747. DOI: 10.1007/BF00321362.[Crossref]
  • 5. Zeeshan, M. A., Pane, S., Youn, S. K., Pellicer, E., Schuerle, S., Sort, J., Fusco, S., Lindo, A. M., Park, H. G., & Nelson, B. J. (2013). Graphite coating of iron nanowires for nanorobotic applications: Synthesis, characterization and magnetic wireless manipulation. Adv. Funct. Mater., 23(7), 823–831. DOI: 10.1002/adfm.201202046.[Crossref]
  • 6. Lin, W. S., Jian, Z. J., Lin, H. M., Lai, L. C., Chiou, W. A., Hwu, Y. K., Wu, S. H., Chen, W. C., & Yao, Y. D. (2013). Synthesis and characterization of iron nanowires. J. Chinese Chem. Soc., 60(1), 85–91. DOI: 10.1002/jccs.201200263.[Crossref]
  • 7. Jubb, A. M., & Allen, H. C. (2010). Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces, 2(10), 2804–2812. DOI: 10.1021/am1004943.[Crossref][WoS]
  • 8. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides. Structure, properties, reactions, occurrences and uses. Weinheim, Germany: Wiley-VCH.
  • 9. Wang, C. M., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc., 131(25), 8824–8832. DOI: 10.1021/ja900353f.[Crossref]
  • 10. Long, G. J., Hautot, D., Pankhurst, Q. A., Vandormael, D., Grandjean, F., Gaspard, J. P., Briois, V., Hyeon, T., & Suslick, K. S. (1998). Mossbauer-Bauer-effect and x-ray-absorption spectral study of sonochemically prepared amorphous iron. Phys. Rev. B, 57(17), 10716–10722. DOI: 10.1103/PhysRevB.57.10716.[Crossref]
  • 11. Machala, L., Zboril, R., & Gedanken, A. (2007). Amorphous iron(III) oxide – a review. J. Phys. Chem. B, 111(16), 4003–4018. DOI: 10.1021/jp064992s.[Crossref]
  • 12. Cao, X., Koltypin, Y., Katabi, G., & Prozorov, R. (1997). Preparation and characterization of amorphous nanometre sized Fe3O4 powder. J. Mater. Chem., 7(6), 1007–1009. DOI: 10.1039/a606739e.[Crossref]
  • 13. Petrov, Y. I., & Shafranovsky, E. A. (2012). On the conditions eliciting a detailed structure in the hyperfine field distribution at 57Fe nuclei. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 271, 96–101. DOI: 10.1016/j.nimb.2011.10.014.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.