Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Plasmon spectroscopy: Theoretical and numerical
calculations, and optimization techniques

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present an overview of recent advances
in plasmonics, mainly concerning theoretical and numerical
tools required for the rigorous determination of
the spectral properties of complex-shape nanoparticles
exhibiting strong localized surface plasmon resonances
(LSPRs). Both quasistatic approaches and full electrodynamic
methods are described, providing a thorough
comparison of their numerical implementations. Special
attention is paid to surface integral equation formulations,
giving examples of their performance in complicated
nanoparticle shapes of interest for their LSPR spectra.
In this regard, complex (single) nanoparticle configurations
(nanocrosses and nanorods) yield a hierarchy of
multiple-order LSPR s with evidence of a rich symmetric
or asymmetric (Fano-like) LSPR line shapes. In addition,
means to address the design of complex geometries to retrieve
LSPR spectra are commented on, with special interest
in biologically inspired algorithms. Thewealth of LSPRbased
applications are discussed in two choice examples,
single-nanoparticle surface-enhanced Raman scattering
(SERS) and optical heating, and multifrequency nanoantennas
for fluorescence and nonlinear optics.

Keywords

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

received
14 - 7 - 2015
online
2 - 2 - 2016
accepted
26 - 9 - 2015

Contributors

  • Institut für Physik, Humboldt-
    Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
  • Instituto de Estructura
    de la Materia (IEM-CSIC), Consejo Superior de Investigaciones
    Científicas, Serrano 121, 28006 Madrid, Spain
  • Data Storage Institute, Agency for Science, Technology
    and Research, 117608, Singapore
  • Instituto de Estructura
    de la Materia (IEM-CSIC), Consejo Superior de Investigaciones
    Científicas, Serrano 121, 28006 Madrid, Spain
  • ICD, P2MN, LNIO, Université de technologie de
    Troyes, UMR 6281, CNRS, Troyes, France

References

  • [1] P. Drude, “Zur Elektronentheorie der metalle,” Ann. Phys. 306,566 (1900).[Crossref]
  • [2] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidalerMetallösungen,” Ann. Phys. 330, 377–445 (1908).[Crossref]
  • [3] M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon,1980).
  • [4] H. C. Van De Hulst, Light Scattering by Small Particles, 1st ed.(Dover, 1981).
  • [5] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Lightby Small Particles (Wiley, 1998).
  • [6] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang,D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silvernanostructures for plasmonic applications,” Chem. Rev. 111,3669–3712 (2011).[Crossref]
  • [7] J. T. Shawn, M. J. Campolongo, D. Luo, and W. Cheng, “Buildingplasmonic nanostructures with DNA,” Nature Nanotech. 6, 268–276 (2011).
  • [8] W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelengthoptics,” Nature 424, 824–830 (2003).[Crossref]
  • [9] P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, and B. Hecht, “Resonantoptical antennas,” Science 308, 1607–1609 (2005).
  • [10] S. A. Maier, Plasmonics: Fundamental And Applications(Springer Verlag, New York, 2007).
  • [11] J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L.Atkinson, and G. C. Schatz, “Methods for describing the electromagneticproperties of silver and gold nanoparticles,” Acc.Chem. Res. 41, 1710–1720 (2008).[Crossref]
  • [12] P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,”Adv. Opt. Photon. 1, 438–483 (2009).[Crossref]
  • [13] W. L. Barnes, “Comparing experiment and theory in plasmonics,”J. Opt. A Pure Appl. Opt. 11, 114002 (2009).[Crossref]
  • [14] V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A.Maier, “Plasmonic nanoantennas: fundamentals and their use incontrolling the radiative properties of nanoemitters,” Chem. Rev.111, 3888–3912 (2011).[Crossref]
  • [15] N. J. Halas, S. Lal,W.-S. Chang, S. Link, and P. Nordlander, “Plasmonsin strongly coupled metallic nanostructures,” Chem. Rev.111, 3913–3961 (2011).[Crossref]
  • [16] M. I. Stockman, “Nanoplasmonics: past, present, and glimpseinto future,” Opt. Express 19, 22029–22106 (2011).[Crossref]
  • [17] R. L. Rich and D. G.Myszka, “Spying on HIV with SPR," Trends inMicrobiology 11, 124–133 (2003).[Crossref]
  • [18] C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “SurfaceenhancedRaman spectroscopy,” Anal. Chem. 77, 338A–346A(2005).
  • [19] C. L. Haynes, C. R. Yonzon, X. Zhang, and R. P. Van Duyne,“Surface-enhanced Raman sensors: early history and the developmentof sensors for quantitative biowarfare agent and glucosedetection" J. Raman Spectrosc. 36, 471–484 (2005).[Crossref]
  • [20] K. A. Willets and R. P. Van Duyne, “Localized surface plasmonresonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–97 (2007).[Crossref]
  • [21] J. Lakowicz and Y. Fu, “Modification of single molecule fluorescencenear metallic nanostructures,” Laser & Photonics Reviews3, 221–232 (2009).[Crossref]
  • [22] K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonancesensors,” Chem. Rev. 111, 3828–3857 (2011).[Crossref]
  • [23] L. Rayleigh, “On the scattering of ligth by small particles,” Philos.Mag. 41, 447–454 (1871).
  • [24] L. Rayleigh, “On the light from the sky, its polarization andcolor,” Philos. Mag. 41, 107–120 (1871).
  • [25] R. Gans, “Über die Form ultramikroskopischer Goldteilchen,”Ann. Phys. 342, 881–900 (1912).[Crossref]
  • [26] J. Zuloaga and P. Nordlander, “On the energy shift betweenNear-Field and Far-field Peak Intensities in Localized PlasmonSystems,” Nano Lett. 11, 1280–1283 (2011).[Crossref]
  • [27] F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of thespectral behavior of localized plasmon resonances in the nearandfar-field regimes,” Langmuir 29, 6715–6721 (2013).[Crossref]
  • [28] B. Khlebtsov and N. Khlebtsov, “Multipole plasmons in metalnanorods: Scaling properties and dependence on particle size,shape, orientation, and dielectric environment," J. Phys. Chem.C 111, 11516–11527 (2007).[Crossref]
  • [29] A. L. Aden and M. Kerker, “Scattering of electromagnetic wavesfrom two concentric spheres,” J. Appl. Phys. 22, 1242-1246(1951).[Crossref]
  • [30] M. Kerker, “Scattering of electromagnetic waves from concentricinfinite cylinders,” J. Opt. Soc. Am. A 51, 506–508 (1961).[Crossref]
  • [31] I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo,“Plasmons in nearly touching metallic nanoparticles: singular responsein the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006).[Crossref]
  • [32] O. Keller, “Optical Polarizability of Small Quantum Particles :Local-field Effects in a Self-field Approach," J. Opt. Soc. Am. B 11,1480–1489 (1994).[Crossref]
  • [33] K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua,and J. J. Baumberg, “Revealing the quantum regime in tunnellingplasmonics,” Nature 491, 574–577 (2012).[Crossref]
  • [34] P. B. Johnson and R. W. Christy, “Optical constants of the noblemetals," Phys. Rev. B 6, 4370-4379 (1972).[Crossref]
  • [35] E. D. Palik, Handbook of Optical Constants of Solids (AcademicPress, 1998).
  • [36] U. Kreibig and M Vollmer, Optical Properties of Metal Clusters(Springer, Berlin, 1995).
  • [37] M. I. Stockman, S.V. Faleev and D. J. Bergman, “Localization versusDelocalization of Surface Plasmons in Nanosystems: Can OneState Have Both Characteristics?," Phys. Rev. Lett. 87, 167401(2001).[Crossref]
  • [38] F. Ouyang and M. Isaacson, “Surface plasmon excitation of objectswith arbitrary shape and dielectric constant," PhilosophicalMagazine B 60, 481–492 (1989).[Crossref]
  • [39] F. Ouyang and M. Isaacson, “Accurate modeling of particlesubstratecoupling of surface plasmon excitation in EELS," Ultramicroscopy31, 345–350 (1989).[Crossref]
  • [40] D. R. Fredkin and I. D. Mayergoyz, “Resonant Behavior of DielectricObjects (Electrostatic Resonances)," Phys. Rev. Lett. 91,253902 (2003).[Crossref]
  • [41] I. D.Mayergoyz, D. R. Fredkin and Z. Zhang, “Electrostatic (plasmon)resonances in nanoparticles," Phys. Rev. B 72, 155412(2005).[Crossref]
  • [42] I. D. Mayergoyz and Z. Zhang, “Modeling of the Electrostatic(Plasmon) Resonance in Metallic and Semiconductor Nanoparticles",Journal of Computational Electronics 4, 139 (2005).[Crossref]
  • [43] I. D. Mayergoyz and Z. Zhang, “Numerical analysis of plasmonresonances in nanoparticles," Magnetics, IEEE Transactions on ,42, 759–762 (2006).
  • [44] Z. Zhang, I. D.Mayergoyz, ID.,N. A. Gumerov and R. Duraiswami,“Numerical Analysis of Plasmon Resonances in NanoparticlesBased on Fast Multipole Method," Magnetics, IEEE Transactionson 43, 1465–1468 (2007).
  • [45] I. D. Mayergoyz and Z. Zhang, “The Computation of ExtinctionCross Sections of Resonant Metallic Nanoparticles Subject to OpticalRadiation," Magnetics, IEEE Transactions on 43, 1681–1684(2007).
  • [46] I. D. Mayergoyz and Z. Zhang, “Numerical Analysis ofNanoparticle-Structured Plasmon Waveguides of Light," Magnetics,IEEE Transactions on 43, 1685–1688 (2007).
  • [47] I. D. Mayergoyz and Z. Zhang, “Numerical Analysis of PlasmonResonances in Metallic Nanoshells," Magnetics, IEEE Transactionson 43, 1689–1692 (2007).
  • [48] I. D. Mayergoyz, Plasmon Resonances in Naoparticles, (WorldScientific Publishing, 2013).
  • [49] T. Sandu, D. Vrinceanu and E. Gheorghiu, “Surface PlasmonResonances of Clustered Nanoparticles," Plasmonics 6, 407–412(2011).[Crossref]
  • [50] T. Sandu, “Shape effects on localized surface plasmon resonancesin metallic nanoparticles," J. Nanopart Res. 14, 14:905(2012).[Crossref]
  • [51] T. Sandu, “Eigenmode Decomposition of the Near-Field Enhancementin Localized Surface Plasmon Resonances of MetallicNanoparticles," Plasmonics 8, 391–402 (2013).[Crossref]
  • [52] B. Sturman, E. Podivilov and M. Gorkunov, “Universal plasmonicproperties of two-dimensional nanoparticles possessing sharpcorners," Phys. Rev. B 87, 115406 (2013).[Crossref]
  • [53] E. Podivilov, B. Sturman, and M. Gorkunov, “Plasmonic resonancesof nanowires with periodically corrugated cross sections,"J. Opt. Soc. Am. B 29, 3248 (2012).[Crossref]
  • [54] B. Sturman, E. Podivilov and M. Gorkunov, “Metal nanoparticleswith sharp corners: Universal properties of plasmon resonances,"EPL 101, 57009 (2013).[Crossref]
  • [55] A.A. Maradudin and W.M. Visscher, “Electrostatic and electromagneticsurface shape resonances," Zeitschrift fur Physik BCondensed Matter 60, 215–230 (1985).
  • [56] D. Grieser, H. Uecker, S.-A. Biehs, O. Huth, F. Rüting andM. Holthaus, “Perturbation theory for plasmonic eigenvalues,"Phys. Rev. B 80, 245405 (2009).[Crossref]
  • [57] B. Sturman, E. Podivilov and M. Gorkunov, “Critical behavior ofoptical singularities near sharp metal corners and tips," Phys.Rev. B 89, 045429 (2014).[Crossref]
  • [58] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridizationmodel for the plasmon response of complex nanostructures,"Science 302, 419–422 (2003).[Crossref]
  • [59] J. Jin, The finite element method in electromagnetics (Wiley, NewYork, 2002); P. Monk, Finite element methods forMaxwell’s equations(Oxford Science Publications, Oxford, 2003).
  • [60] A. Taflove and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method (Artech House,Boston, 2005).
  • [61] K. Busch, M. König, and J. Niegemann, “Discontinuous Galerkinmethods in nanophotonics,” Laser Photonics Rev. 5, 773–809(2011).[Crossref]
  • [62] C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog.Phys. 59, 657–699 (1996).[Crossref]
  • [63] B. T. Draine and P. J. Flatau, “Discrete-Dipole approximation forscattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).[Crossref]
  • [64] M. I. Mishchenko, N. T. Zakharova, G. Videen, N. G. Khlebtsov,and T. Wriedt, “Comprehensive T-matrix reference database: a2007–2009 update,” J. Quant. Spectrosc. Radiat. Tranfer. 111,650–658 (2010).
  • [65] A. A. Maradudin, T. Michel, A. Mcgurn, and E. R. Méndez, “Enhancedbackscattering of light from a random grating,” Ann.Phys. 203, 255–307 (1990).[Crossref]
  • [66] J. Sánchez-Gil and M. Nieto-Vesperinas, “Light scattering fromrandom rough dielectric surfaces,” J. Opt. Soc. Am. A 8, 1270–1286 (1991).[Crossref]
  • [67] F. J. García de Abajo and A. Howie, “Relativistic electron energyloss and electron-induced photon emission in inhomogeneousdielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).[Crossref]
  • [68] V. Giannini and J. A. Sánchez-Gil, “Calculations of light scatteringfrom isolated and interacting metallic nanowires of arbitrarycross section by means of Green’s theorem surface integralequations in parametric form,” J. Opt. Soc. Am. A 24, 2822–2830(2007).[Crossref]
  • [69] V. Myroshnychenko, E. Carbó-Argibay, I. Pastoriza-Santos, J.Pérez-Juste, L. M. Liz-Marzán, and F. García de Abajo, “Modelingthe optical response of highly faceted metal nanoparticles witha fully 3D boundary element method,” Adv. Mat. 20, 4288–4293(2008).
  • [70] A. Kern and O. J. F. Martin, “Surface integral formulation for3D simulations of plasmonics and high permittivity nanostructures,”J. Opt. Soc. Am. A 26, 732–740 (2009).[Crossref]
  • [71] R. Rodríguez-Oliveros and J. A. Sanchez-Gil, “Localized surfaceplasmonresonances on single and coupled nanoparticlesthrough surface integral equations for flexible surface,” Opt. Express19, 12208–12219 (2011).[Crossref]
  • [72] J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Lanndesa,“Method-of-moments formulation for the analysis of plasmonicsnano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348(2011).[Crossref]
  • [73] A. Kern and O. J. F. Martin, “Excitation and reemission ofmolecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011).[Crossref]
  • [74] C. Forestiere, G. Iadarola, G. Rubinacci, A. Tamburrino, L. Dal Negro,and G. Miano, “Surface integral formulations for the designof plasmonic nanostructures,” J. Opt. Soc. Am. A 29, 2314–2327(2012).[Crossref]
  • [75] S. Rao, D.Wilton, and A. Glisson, “Electromagnetic scattering bysurfaces of arbitrary shape,” IEEE Trans. Antenn. and Propag. 30,409–418 (1982).[Crossref]
  • [76] R. Rodríguez-Oliveros and J. A. Sánchez-Gil, “Gold nanostarsas thermoplasmonic nanoparticles for optical heating,” Opt. Express20, 621–626 (2012).[Crossref]
  • [77] Y. P. Chen, W. E. I. Sha, W. C. H. Choy, L. Jiang, and W. C. Chew,“Study on spontaneous emission in complex multilayered plasmonicsystem via surface integral equation approach with layeredmedium Green’s function", Opt. Express 20, 20210-20221(2012).[Crossref]
  • [78] F. Obelleiro, J. M. Taboada, D. M. Solís, and L. Bote, “Directiveantenna nanocoupler to plasmonic gap waveguides,” Opt. Lett.38, 1630–1633 (2013).[Crossref]
  • [79] D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzián, and F.J. García de Abajo, “Toward ultimatenanoplasmonics modeling",ACS Nano 8, 7559-7570 (2014).[Crossref]
  • [80] I. Simonsen, A. A. Maradudin, and T. A. Leskova, “The Scatteringof Electromagnetic Waves from Two-Dimensional RandomlyRough Perfectly Conducting Surfaces: The Full Angular IntensityDistribution,” Phys. Rev. A 81, 013806 (2009).
  • [81] I. Simonsen, A. Maradudin, and T. Leskova, “Scattering of electromagneticwaves from two-dimensional randomly rough penetrablesurfaces,” Phys. Rev. Lett. 104, 223904 (2010).[Crossref]
  • [82] U. Hohenester and J. R. Krenn, “Surface plasmon resonances ofsingle and coupled metallic nanoparticles: A boundary integralmethod approach,” Phys. Rev. B 72, 195,429 (2005).
  • [83] J. Jung, “Green’s function surface integral equation method fortheoretical analysis of scatterers close to a metal interface,”Phys. Rev. B 77, 245310 (2008).[Crossref]
  • [84] P. I. Geshev, U. Fischer, and H. Fuchs, “Calculation of tip enhancedRaman scattering caused by nanoparticle plasmons actingon a molecule placed near a metallic film,” Phys. Rev. B 81,125441 (2010).[Crossref]
  • [85] I. Chremmos, “Magnetic field integral equation analysis of interactionbetween a surface plasmon polariton anda circular dielectriccavity," J. Opt. Soc. Am. A 26, 2623-2633 (2009).[Crossref]
  • [86] Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary opticaltransmission in the visible range through annular aperture metallicarrays," Opt. Lett. 32, 2942-2944 (2007).[Crossref]
  • [87] P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González,F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesisand optical response of gold nanostars,” Nanotechnology 19,015606 (2008).[Crossref]
  • [88] C. G. Khoury and T. Vo-Dinh, “Gold nanostars for surfaceenhancedRaman scattering: Synthesis, characterization and optimization,”J. Phys. Chem. C 112, 18849–18859 (2008).[Crossref]
  • [89] C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, and J. Feldmann,“Single gold nanostars enhance Raman scattering,” Appl. Phys.Lett. 94, 153113 (2009).[Crossref]
  • [90] V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “SurfacePlasmon Resonances of Metallic Nanostars/Nanoflowersfor Surface-Enhanced Raman Scattering,” Plasmonics 5, 99–104(2010).[Crossref]
  • [91] A. García-Leis, J. V. García-Ramos, and S. Sánchez-Cortés, “Silvernanostarswith high SERS performance,” J. Phys. Chem. C 117,7791–7795 (2013).[Crossref]
  • [92] J. Gielis, “A generic geometric transformation that unifies awiderange of natural and abstract shapes,” Am. J. Bot. 90, 333–338(2003).[Crossref]
  • [93] H. Yuan, C. G. Khoury, C. M. Wilson, G. A. Grant, A. J. Bennett,and T. Vo-Dinh, “In vivo particle tracking and photothermal ablationusing plasmon-resonant gold nanostars,” Nanomedicine 8,1355–1363 (2012).[Crossref]
  • [94] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander,H. Giessen, and C. T. Chong, “The fano resonance in plasmonicnanostructures and metamaterials," Nat. Mater. 9, 707–715 (2010).
  • [95] U. Fano, “Effects of configuration interaction on intensities andphase shifts," Phys. Rev. 124, 1866–1878 (1961).[Crossref]
  • [96] A. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonancesin nanoscale structures," Rev. Mod. Phys. 82, 2257–2298 (2010).[Crossref]
  • [97] V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A.Maier, “Fano resonances in nanoscale plasmonic systems: aparameter-free modeling approach," Nano Lett. 11, 2835–2840(2011).[Crossref]
  • [98] N. Verellen, P. Van Dorpe, D. Vercruysse, G. A. E. Vandenbosch,and V. V. Moshchalkov, “Dark and bright localized surface plasmonsin nanocrosses," Opt. Express 19, 11034–11051 (2011).[Crossref]
  • [99] F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference ofplasmon resonances at a single rod-shaped nanoantenna," NewJ. Phys. 14, 023035 (2012).[Crossref]
  • [100] F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fanolikeinterference: Probing refractive index with nanorice andnanobelts," ACS Nano 6, 8989–8996 (2012).[Crossref]
  • [101] N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse,D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov,and J. A. Sánchez-Gil, “Mode Parity-Controlled Fano- and LorentzlikeLine Shapes Arising in Plasmonic Nanorods," Nano Lett. 14,2322–2329 (2014).[Crossref]
  • [102] Y.-F. Chau, M.W. Chen, and D. P. Tsai, “Three-dimensional analysisof surface plasmon resonance modes on a gold nanorod,"Appl. Opt. 48, 617–622 (2009).[Crossref]
  • [103] H. Wei, A. Reyes-Coronado, P. Nordlander, J. Aizpurua,and H. Xu, “Multipolar plasmon resonances in individual Agnanorice," ACS Nano 80, 2649–2654 (2010).[Crossref]
  • [104] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A.Mirkin, “Multipole plasmon resonances in gold nanorods," J.Phys. Chem. B 110, 2150–2154 (2005).
  • [105] J. R. Krenn, G. Schider,W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmonexcitations in silver nanoparticles," App. Phys. Lett. 77, 3379–3381 (2000).[Crossref]
  • [106] P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst,and R. Quidant, “Spectroscopic mode mapping of resonant plasmonnanoantennas," Phys. Rev. Lett. 101, 116805 (2008).[Crossref]
  • [107] C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Stefanou,“Tailoring plasmons with metallic nanorod arrays," Phys. Rev. B80, 125124 (2009).[Crossref]
  • [108] L. Novotny, “Effective wavelength scaling for optical antennas,"Phys. Rev. Lett. 98, 266802 (2007).[Crossref]
  • [109] G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mappingthe plasmon resonances of metallic nanoantennas," Nano Lett.8, 631–636 (2008).[Crossref]
  • [110] J. Kun, J.-L. Bijeon, P.-M. Adam, and E.-R. Ionescu,“A facile andcost-effective TEM grid approach to design gold nano-structuredsubstrates for high throughput plasmonic sensitive detection ofbiomolecules," Analyst 138, 1015–1019 (2013).
  • [111] W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “PlasmonicNanolithography," Nano Letters 4, 1085–1088 (2004).[Crossref]
  • [112] J. Li, A. Salandrino, and N. Engheta, “Shaping the Beam of Lightin Nanometer Scales: A Yagi-Uda Nanoantenna in Optical Domain,"Physical Review B 76, 245403 (2007).[Crossref]
  • [113] P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticlestarget cancer,” Nano Today 7, 1929–1934 (2007).
  • [114] G. M. Sacha and P. Varona, “Artificial intelligence in nanotechnology,"Nanotechnology 24, 452002 (2013).[Crossref]
  • [115] Ch. Hafner, X. Cui, and R. Vahldieck, “Stochastic parameter optimizersfor optical nanostructures," Int. J. of Microwave and OpticalTechnology 1, 121–132 (2006).
  • [116] Ch. Hafner, X. Cui, J. Smajic, and R. Vahldieck,“Eflcient proceduresfor the optimization of defects in photonic crystal structures,"J. Opt. Soc. Am. A 24, 1177–1187 (2007).[Crossref]
  • [117] D.-H. Kwon, Z. Bayraktar, D. H. Werner, U. K. Chettiar, A. V.Kildishev, and V. M. Shalaev,“Nature-based optimization of 2Dnegative-index metamaterials," Proceedings of the IEEE Antennasand Propagation Society Int. Symp., 1589–1592 (2007).
  • [118] A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon,Z. Bayraktar, and D. H. Werner, “Stochastic optimization of lowlossoptical negative-index metamaterial," J. Opt. Soc. Am. B 24,A34–A39 (2007).
  • [119] S. Kessentini and D. Barchiesi, “Quantitative comparison of optimizednanorods, nanoshells and hollow nanospheres for photothermaltherapy," Biomed. Opt. Express3, 590–604 (2012).[Crossref]
  • [120] C. Forestiere, M. Donelli, G. F. Walsh, E. Zeni, G. Miano, and L.Dal Negro, “Particle-swarm optimization of broadband nanoplasmonicarrays," Opt. Lett. 35, 133–135 (2010).[Crossref]
  • [121] K. Motzek, U. Vogler, M. Hennemeyer, M. Hornung, R. Voelkel,A. Erdmann, B. Meliorisz,“Computational algorithms for optimizingmask layouts in proximity printing," Microelectronic engineering88, 2066–2069 (2011).[Crossref]
  • [122] T. Feichtner, O. Selig, M. Kiunke, and B. Hecht,“Evolutionaryoptimization of optical antennas," Phys. Rev. Lett. 109, 127701(2012).[Crossref]
  • [123] I. Grigorenko, S. Haas, A. Balatsky, and A. F. J. Levi, “Optimalcontrol of electromagnetic field using metallic nanoclusters,"New J. Phys. 10, 043017 (2008).[Crossref]
  • [124] C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino,S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineeredplasmonic nanoarrays," Nano Lett. 12, 2037–2044 (2012)[Crossref]
  • [125] M. Lilichenko and A. Myers Kelley, “Application of artificialneural networks and genetic algorithms to modeling molecularelectronic spectra in solution," J. Chem. Phys. 114, 7094– 7102(2001).
  • [126] M. H. Hennessy and A. Myers Kelley, “Using real-valued multiobjectivegenetic algorithms to model molecular absorptionspectra and Raman excitation profiles in solution," Phys. Chem.Chem. Phys. 6, 1085–1095 (2004).[Crossref]
  • [127] T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design ofnanostructures for imaging and biomedical applications by plasmonicoptimization," Opt. Lett. 33, 2812–2814 (2008).[Crossref]
  • [128] A. Tassadit, D. Macías, J. A. Sánchez-Gil, P.-M. Adam, andR. Rodríguez-Oliveros, “Metal nanostars: stochastic optimizationof resonant scattering properties," Superlattice Microst. 49,288–293 (2011).[Crossref]
  • [129] D. Macías, P.-M. Adam, V. Ruiz-Cortés, R. Rodríguez-Oliveros,and J. Sánchez-Gil, “Heuristic optimization for the design of plasmonicnanowires with specific resonant and scattering properties,"Opt. Express 20, 13146–13163 (2012).[Crossref]
  • [130] S. Kessentini, D. Barchiesi, T. Grosges, and M. Lamy de laChapelle, “Selective and collaborative optimization methods forplasmonics: a comparison," PIERS Online 7, 291–295 (2011).
  • [131] P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein,“Resonances on-demand for plasmonic nano-particles," NanoLett. 11, 2329–2333 (2011).[Crossref]
  • [132] M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Light concentrationin the near-field of dielectric spheroidal particles withmesoscopic sizes," Opt. Express 19, 2847–2858 (2011).
  • [133] H. P. Schwefel, Evolution and Optimum Seeking, (John Wiley &Sons Inc., NY, 1995).
  • [134] H. G. Beyer, The Theory of Evolution Strategies (Springer-Verlag, 2001).
  • [135] J. H. Holland, Adaption in Natural and Artificial Systems, (MITPress/Bradford Books, US, 1992).
  • [136] R. C. Eberhart and J. Kennedy, “A new optimizer using particleswarm theory," in Proceedings of the Sixth International Symposiumon Micro Machine and Human Science (IEEE,1995), pp. 39–43.
  • [137] R. Salomon, “Evolutionary Algorithms and Gradient Search:Similarities and Differences," IEEE Trans. Evolutionary Computation2, 45–55, (1997).
  • [138] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimizationin electromagnetics," IEEE Trans. on Antennas Propag. 52, 397–407 (2004).[Crossref]
  • [139] R. Poli, J. Kennedy, and T. Blackwell, “Particle Swarm Optimisation:an overview," Swarm Intelligence 1, 33–57 (2007).[Crossref]
  • [140] E. Podivilov, B. Sturman, and M. Gorkunov, “Plasmonic resonancesof nanowireswith periodically corrugated cross sections"J. Opt. Soc. Am. B 29, 3248-3253 (2012).[Crossref]
  • [141] R. Aroca, Surface-enhanced vibrational spectroscopy, Wiley,New York (2006).
  • [142] E. M. Purcell, “Spontaneous emision probabilities at radio frequencies,”Phys. Rev. 69, 681 (1946).
  • [143] R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescenceand energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65(1978).
  • [144] H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci..17, 153–320 (1984).[Crossref]
  • [145] P. Johansson, H. Xu, and M. Käll, “Surface-enhanced Ramanscattering and fluorescence near metal nanoparticles,” Phys.Rev. B 72, 035427 (2005).[Crossref]
  • [146] P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, andD. W. Pohl, “Resonant optical antennas," Science 308, 1607–1609 (2005).[Crossref]
  • [147] S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar,“Enhancement of single molecule fluorescence using a goldnanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97,017402 (2006).[Crossref]
  • [148] O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas,“Strong Enhancement of the Radiative Decay Rate of Emittersby Single Plasmonic Nanoantennas,” Nano Lett. 7, 2871–2875 (2007).[Crossref]
  • [149] T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst,“Optical antennas direct single-molecule emission," Nat. Photonics2, 234–237 (2008).[Crossref]
  • [150] F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. García-Etxarri,and J. Aizpurua, “Resonant plasmonic and vibrational coupling ina tailored nanoantenna for infrared detection," Phys. Rev. Lett.101, 157403 (2008).[Crossref]
  • [151] J. N. Anker, W. P. Hall, C. Nilam, J. Zhao, and R. P. Van Duyne,“Biosensing with plasmonic nanosensors," Nat. Mater. 7, 8–10(2008).
  • [152] M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetectionwith active optical antennas," Science 332, 702–704(2011).[Crossref]
  • [153] L. Novotny and N. van Hulst, “Antennas for light," Nat. Photonics5, 83–90 (2011).[Crossref]
  • [154] M.W. Knight, L. Liu, Y.Wang, L. Brown, S.Mukherjee, N. S. King,H.O. Everitt, P. Nordlander, and N. J. Halas, “Aluminumplasmonicnanoantennas," Nano Lett. 12, 6000–6004 (2012).[Crossref]
  • [155] J. M. McMahon, G. C. Schatz, S. K. Gray, “Plasmonics in the ultravioletwith the poor metals Al, Ga, in, Sn, Tl, Pb, and Bi," Phys.Chem. Chem. Phys. 15, 5415–5423 (2013).[Crossref]
  • [156] Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M.Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-visibleplasmonic properties of gallium nanoparticles investigated byvariable-angle spectroscopic and Mueller matrix ellipsometry,"ACS Photonics 1, 582–589 (2014).[Crossref]
  • [157] M. A. Barral and A. M. Llois, “Photothermal Imaging ofNanometer-Sized Metal Particles among Scatterers,” Science297, 1160–1163 (2002).
  • [158] A. O. Govorov and H. H. Richardson, “Generating heat withmetal nanoparticles,” Nano Today 2, 30–38 (2007).[Crossref]
  • [159] G. Baffou and R. Quidant, “Thermo-plasmonics: using metallicnanostructures as nano-sources of heat,” Laser Photon. Rev. 7,171–187 (2013).[Crossref]
  • [160] C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L.West, “Nanoshell-Enabled Photonics-Based Imaging and Therapyof Cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).[Crossref]
  • [161] W. Zhao and J. M. Karp, “Tumor targeting: Nanoantennas heatup," Nature Mater. 8, 453–454 (2009).[Crossref]
  • [162] D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-González,A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Soler,“Nanoparticles for photothermal therapies," Nanoscale 6, 9494–9530 (2014).[Crossref]
  • [163] O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas,“Optical scattering resonances of single and coupled dimerplasmonic nanoantennas," Opt. Express 15, 17736–17746 (2007).[Crossref]
  • [164] V. Giannini and J. A. Sánchez-Gil, “Excitation and emissionenhancement of single molecule fluorescence through multiplesurface-plasmon resonances on metal trimer nanoantennas,”Opt. Lett. 33, 899–901 (2008).[Crossref]
  • [165] H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancingthe nonlinear optical response using multifrequency goldnanowireantennas,” Phys. Rev. Lett. 108, 1–4 (2012).

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nansp-2015-0006
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.