Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 2 | 1 |

Article title

Ink transport modelling in Dip-Pen
Nanolithography and Polymer Pen Lithography

Content

Title variants

Languages of publication

EN

Abstracts

EN
Dip-pen nanolithography (DPN) and Polymer
pen lithography (PPL) are powerful lithography
techniques being able to pattern a wide range of inks.
Transport and surface spreading depend on the ink
physicochemical properties, defining its diffusive
and fluid character. Structure assembly on surface
arises from a balance between the entanglement of
the ink itself and the interaction with the substrate.
According to the transport characteristics, different
models have been proposed. In this article we review
the common types of inks employed for patterning, the
particular physicochemical characteristics that make
them flow following different dynamics as well as the
corresponding transport mechanisms and models that
describe them.

Publisher

Journal

Year

Volume

2

Issue

1

Physical description

Dates

received
23 - 11 - 2015
accepted
23 - 12 - 2015
online
5 - 2 - 2016

Contributors

  • Institute of Nanotechnology (INT)
    and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of
    Technology (KIT), Karlsruhe, Germany
author
  • Institute of Nanotechnology (INT)
    and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of
    Technology (KIT), Karlsruhe, Germany
author
  • Institute of Nanotechnology (INT)
    and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of
    Technology (KIT), Karlsruhe, Germany
  • Physical Institute and Center for Nanotechnology
    (CeNTech), Westfälische Wilhelms-Universität Münster, Münster,
    Germany

References

  • ---
  • [1] Binnig G., Quate C. F., Atomic Force Microscope, Phys. Rev. Lett.,1986, 56, 930–933.[Crossref]
  • ---
  • [2] Jaschke M., Butt H.-J., Deposition of Organic Material by the Tipof a Scanning Force Microscope, Langmuir, 1995, 11, 1061–1064.[Crossref]
  • [3] Piner R. D., Zhu J., Xu F., Hong S., Mirkin C. A., ‘Dip-Pen’ Nanolithography,Science, 1999, 283, 661–663.[Crossref]
  • [4] Brown K., Eichelsdoerfer D., Liao X., He S., Mirkin C., Materialtransport in dip-pen nanolithography, Front. Phys., 2013, 9,385–397.[Crossref]
  • [5] Urtizberea A., Hirtz M., A diffusive ink transport model for lipiddip-pen nanolithography, Nanoscale, 2015, 7, 15618–15634.[Crossref]
  • [6] Wang Y., Giam L. R., Park M., Lenhert S., Fuchs H., Mirkin C. A., ASelf-Correcting Inking Strategy for Cantilever Arrays Addressedby an Inkjet Printer and Used for Dip-Pen Nanolithography,Small, 2008, 4, 1666–1670.[Crossref]
  • [7] Jang J. W., Smetana A., Stiles P., Multi-ink pattern generation bydip-pen nanolithography, Scanning, 2010, 32, 24–29.
  • [8] Weeks B. L., Noy A., Miller A. E., De Yoreo J. J., Effect ofdissolution kinetics on feature size in dip-pen nanolithography.,Phys. Rev. Lett., 2002, 88, 255505.[Crossref]
  • [9] Sheehan P. E., Whitman L. J., Thiol diffusion and the role ofhumidity in ‘Dip Pen Nanolithography’., Phys. Rev. Lett., 2002,88, 156104.[Crossref]
  • [10] Jang J., Schatz G. C., Ratner M. A., Liquid meniscus condensationin dip-pen nanolithography, J. Chem. Phys., 2002, 116,3875–3886.
  • [11] Cho N., Ryu S., Kim B., Schatz G. C., Hong S., Phase of molecularink in nanoscale direct deposition processes, J. Chem. Phys.,2006, 124, 024714.
  • [12] Rozhok S., Piner R., Mirkin C. A., Dip-Pen Nanolithography: WhatControls Ink Transport?, J. Phys. Chem. B, 2003, 107, 751–757.[Crossref]
  • [13] Chung S., Felts J. R., Wang D., King W. P., De Yoreo J. J.,Temperature-dependence of ink transport during thermaldip-pen nanolithography, Appl. Phys. Lett., 2011, 99, 129–132.[Crossref]
  • [14] Sanedrin R. G., Amro N. A., Rendlen J., Nelson M., Temperaturecontrolled dip-pen nanolithography, Nanotechnology, 2010, 21,115302.[Crossref]
  • [15] Sheehan P. E., Whitman L. J., King W. P., Nelson B. A., Nanoscaledeposition of solid inks via thermal dip pen nanolithography,Appl. Phys. Lett., 2004, 85, 1589–1591.[Crossref]
  • [16] Jang J., Hong S., Schatz G. C., Ratner M. A., Self-assembly ofink molecules in dip-pen nanolithography: A diffusion model, J.Chem. Phys., 2001, 115, 2721.
  • [17] Eichelsdoerfer D. J., Brown K. A., Mirkin C. A., Capillary bridgerupture in dip-pen nanolithography, Soft Matter, 2014, 10,5603–5608.
  • [18] Hirtz M., Corso R., Sekula-Neuner S., Fuchs H., Comparativeheight measurements of dip-pen nanolithography-producedlipid membrane stacks with atomic force, fluorescence, andsurface-enhanced ellipsometric contrast microscopy, Langmuir,2011, 27, 11605–11608.[Crossref]
  • [19] Huo F., Zheng Z., Zheng G., Giam L. R., Zhang H., Mirkin C. A.,Polymer Pen Lithography, Science, 2008, 321, 1658–1660.[Crossref]
  • [20] Hong J. M., Ozkeskin F. M., Zou J., A micromachined elastomerictip array for contact printing with variable dot size and density, J.Micromechanics Microengineering, 2008, 18, 015003.
  • [21] Liao X., Braunschweig A. B., Zheng Z., Mirkin C. A., Force- andtime-dependent feature size and shape control in molecularprinting via polymer-pen lithography., Small, 2010, 6,1082–1086.[Crossref]
  • [22] Brinkmann F., Hirtz M., Greiner A. M., Weschenfelder M.,Waterkotte B., Bastmeyer M., Fuchs H., InterdigitatedMulticolored Bioink Micropatterns by Multiplexed Polymer PenLithography, Small, 2013, 9, 3266–3275.[Crossref]
  • [23] Saha S. K., Culpepper M. L., An Ink Transport Model forPrediction of Feature Size in Dip Pen Nanolithography, J. Phys.Chem. C, 2010, 114, 15364–15369.[Crossref]
  • [24] Saha S. K. , Culpepper M. L., A surface diffusion model for DipPen Nanolithography line writing, Appl. Phys. Lett., 2010, 96,243105.[Crossref]
  • [25] Nocedal I., Espinosa H., Kim K.-H., Ink Diffusion in Dip-PenNanolithography: A Study in the Development of Nano FountainProbes, 2005, 2, 105.
  • [26] Giam L. R., Wang Y., Mirkin C. A., Nanoscale molecular transport:The case of dip-pen nanolithography, J. Phys. Chem. A, 2009,113, 3779–3782.[Crossref]
  • [27] Piner R. D., Mirkin C. A., Effect of Water on Lateral ForceMicroscopy in Air, Langmuir, 1997, 13, 6864–6868.[Crossref]
  • [28] Schenk M., Fu M., Direct visualization of the dynamic behaviorof a water meniscus by scanning electron microscopy, J. Appl.Phys., 1998, 84, 4880–4884.[Crossref]
  • [29] Weeks B. L., Vaughn M. W., Deyoreo J. J., Direct imagingof meniscus formation in atomic force microscopy usingenvironmental scanning electron microscopy, Langmuir, 2005,21, 8096–8098.[Crossref]
  • [30] Stifter T., Marti O., Bhushan B., Theoretical investigationof the distance dependence of capillary and van der Waalsforces in scanning force microscopy, Phys. Rev. B, 2000, 62,13667–13673.[Crossref]
  • [31] Kim H., Smit B., Jang J., Monte carlo study on the water meniscuscondensation and capillary force in atomic force microscopy, J.Phys. Chem. C, 2012, 116, 21923–21931.[Crossref]
  • [32] Xiao X., Qian L., Investigation of humidity-dependent capillaryforce, Langmuir, 2000, 16, 8153–8158.[Crossref]
  • [33] Sirghi L., Szoszkiewicz R., Riedo E., Volume of a nanoscale waterbridge, Langmuir, 2006, 22, 1093–1098.[Crossref]
  • [34] Sedin D. L., Rowlen K. L., Adhesion forces measured byatomic force microscopy in humid air, Anal. Chem., 2000, 72,2183–2189.[Crossref]
  • [35] He M., Szuchmacher Blum A., Aston D. E., Buenviaje C., OverneyR. M., Luginbühl R., Critical phenomena of water bridges innanoasperity contacts, J. Chem. Phys., 2001, 114, 1355–1360.
  • [36] Colak A., Wormeester H., Zandvliet H. J. W., Poelsema B.,Surface adhesion and its dependence on surface roughness andhumidity measured with a flat tip, Appl. Surf. Sci., 2012, 258,6938–6942.[Crossref]
  • [37] Peterson E. J., Weeks B. L., De Yoreo J. J. , Schwartz P. V., Effectof environmental conditions on dip pen nanolithography ofmercaptohexadecanoic acid, J. Phys. Chem. B, 2004, 108,15206–15210.[Crossref]
  • [38] Schwartz P. V., Molecular transport from an atomic forcemicroscope tip: A comparative study of dip-pen nanolithography,Langmuir, 2002, 18, 4041–4046.[Crossref]
  • [39] Weeks B. L., DeYoreo J. J., Dynamic meniscus growth at ascanning probe tip in contact with a gold substrate, J. Phys.Chem. B, 2006, 110, 10231–10233.[Crossref]
  • [40] Nafday O. A., Vaughn M. W., Weeks B. L., Evidence of meniscusinterface transport in dip-pen nanolithography: An annulardiffusion model, J. Chem. Phys., 2006, 125, 144703.
  • [41] Antoncik E., Dip-pen nanolithography: A simple diffusion model,Surf. Sci., 2005, 599, L369–L371.
  • [42] Haaheim J., Eby R., Nelson M., Fragala J., Rosner B., ZhangH., Athas G., Dip Pen Nanolithography (DPN): Process andinstrument performance with NanoInk’s NSCRIPTOR system,Ultramicroscopy, 2005, 103, 117–132.[Crossref]
  • [43] Xu S., Liu G., Nanometer-scale fabrication by simultaneousnanoshaving and molecular self-assembly, Langmuir, 1997, 13,127–129.[Crossref]
  • [44] Barczewski M., Walheim S., Heiler T., Blaszczyk A., Mayor M.,Schimmel T., High aspect ratio constructive nanolithographywith a photo-dimerizable molecule., Langmuir, 2010, 26,3623–3628.[Crossref]
  • [45] Chen C., Zhou X., Xie Z., Gao T., Zheng Z., Construction of 3DPolymer Brushes by Dip-Pen Nanodisplacement Lithography:Understanding the Molecular Displacement for Ultrafine andHigh-Speed Patterning, Small, 2015, 11, 613–621.[Crossref]
  • [46] Lee N. K., Hong S., Modeling collective behavior of molecules innanoscale direct deposition processes, J. Chem. Phys., 2006,124, 114711.
  • [47] Heo D. M., Yang M., Kim H., Saha L. C., Jang J., Tip Dependence ofthe Self-Assembly in Dip-Pen Nanolithography, J. Phys. Chem. C,2009, 113, 13813–13818.[Crossref]
  • [48] Manandhar P., Jang J., Schatz G. C., Ratner M. A., Hong S.,Anomalous surface diffusion in nanoscale direct depositionprocesses, Phys. Rev. Lett., 2003, 90, 115505.[Crossref]
  • [49] O’Connell C. D., Higgins M. J., Marusic D., Moulton S. E., WallaceG. G., Liquid ink deposition from an atomic force microscopetip: deposition monitoring and control of feature size, Langmuir,2014, 30, 2712–2721.[Crossref]
  • [50] Felts J. R., Somnath S., Ewoldt R. H., King W. P., Nanometerscaleflow of molten polyethylene from a heated atomic forcemicroscope tip, Nanotechnology, 2012, 23, 215301.[Crossref]
  • [51] O’Connell C. D., Higgins M. J., Sullivan R. P., Moulton S. E.,Wallace G. G., Ink-on-Probe Hydrodynamics in Atomic ForceMicroscope Deposition of Liquid Inks, Small, 2014, 10,3717–3728.[Crossref]
  • [52] Liu G., Zhou Y., Banga R. S., Boya R., Brown K. A., Chipre A. J.,Nguyen S. T., Mirkin C. A., The role of viscosity on polymer inktransport in dip-pen nanolithography., Chem. Sci., 2013, 4,2093–2099.[Crossref]
  • [53] Binder H., The molecular architecture of lipid membranes -New insights from hydration-tuning infrared linear dichroismspectroscopy, Appl. Spectrosc. Rev., 2003, 38, 15–69.[Crossref]
  • [54] Hristova K., White S. H., Determination of the hydrocarbon corestructure of fluid dioleoylphosphocholine (DOPC) bilayers byx-ray diffraction using specific bromination of the double-bonds:effect of hydration, Biophys. J., 1998, 74, 2419–2433.[Crossref]
  • [55] Wiener M. C., White S. H., Structure of a fluid dioleoylphosphatidylcholinebilayer determined by joint refinement of x-ray andneutron diffraction data. II. Distribution and packing of terminalmethyl groups, Biophys. J., 1992, 61, 428–433.[Crossref]
  • [56] Filippov A., Orädd G., Lindblom G., Influence of cholesterol andwater content on phospholipid lateral diffusion in bilayers,Langmuir, 2003, 19, 6397–6400.[Crossref]
  • [57] Lenhert S., Sun P., Wang Y., Fuchs H., Mirkin C. A., Massivelyparallel dip-pen nanolithography of heterogeneous supportedphospholipid multilayer patterns, Small, 2007, 3, 71–75.[Crossref]
  • [58] Lenhert S., Brinkmann F., Laue T., Walheim S., Vannahme C.,Klinkhammer S., Xu M., et al., Lipid multilayer gratings, Nat.Nanotechnol., 2010, 5, 275–279.[Crossref]
  • [59] Hirtz M., Oikonomou A., Georgiou T., Fuchs H., VijayaraghavanA., Multiplexed biomimetic lipid membranes on graphene bydip-pen nanolithography, Nat. Commun., 2013, 4, 2591.[Crossref]
  • [60] Biswas S., Hirtz M., Fuchs H., Measurement of Mass Transferduring Dip‐Pen Nanolithography with Phospholipids, Small,2011, 7, 2081–2086.[Crossref]
  • [61] Förste A., Pfirrmann M., Sachs J., Gröger R., Walheim S.,Brinkmann F., Hirtz M., Fuchs H., Schimmel T., Lipid dropletsimaged by ultra large scale AFM: Prediction of the transferred inkvolume in lipid-dip pen nanolithography, Nanotechnology, 2015,26, 175303.[Crossref]
  • [62] Lenhert S., Mirkin C. A., Fuchs H., In situ lipid dip-pen nanolithographyunder water, Scanning, 2010, 32, 15–23.
  • [63] Mohamad S., Noël O., Buraud J. L., Brotons G., Fedala Y.,Ausserré D., Mechanism of lipid nanodrop spreading in a case ofasymmetric wetting, Phys. Rev. Lett., 2012, 109, 248108.[Crossref]
  • [64] Rädler J., Strey H., Sackmann E., Phenomenology and Kinetics ofLipid Bilayer Spreading on Hydrophilic Surfaces, Langmuir, 1995,11, 4539–4548.[Crossref]
  • [65] Nissen J., Gritsch S., Wiegand G., Rädler J. O., Wetting ofphospholipid membranes on hydrophilic surfaces - Conceptstowards self-healing membranes, Eur. Phys. J. B, 1999, 10,335–344.[Crossref]
  • [66] Sanii B., Parikh A. N., Surface-energy dependent spreading oflipid monolayers and bilayers, Soft Matter, 2007, 3, 974–977.
  • [67] Eichelsdoerfer D. J., Brown K. A., Wang M. X., Mirkin C. A., Role ofAbsorbed Solvent in Polymer Pen Lithography, J. Phys. Chem. B,2013, 117, 16363–16368.[Crossref]
  • [68] Xie Z., Shen Y., Zhou X., Yang Y., Tang Q., Miao Q., Su J., Wu H.,Zheng Z., Polymer pen lithography using dual-elastomer tiparrays, Small, 2012, 8, 2664–2669.[Crossref]
  • [69] Liao X., Braunschweig A. B., Mirkin C. A., ‘Force-feedback’leveling of massively parallel arrays in polymer pen lithography,Nano Lett., 2010, 10, 1335–1340.[Crossref]
  • [70] Zheng Z., Daniel W. L., Giam L. R., Huo F., Senesi A. J., Zheng G.,Mirkin C. A., Multiplexed protein arrays enabled by polymer penlithography: addressing the inking challenge, Angew. ChemieInt. Ed., 2009, 48, 7626–7629.[Crossref]
  • [71] Zhong X., Bailey N. A., Schesing K. B., Bian S., Campos L. M.,Braunschweig A. B., Materials for the preparation of polymerpen lithography tip arrays and a comparison of their printingproperties, J. Polym. Sci. Part A Polym. Chem., 2013, 51,1533–1539.[Crossref]
  • [72] Bian S., He J., Schesing K. B., Braunschweig A. B., PolymerPen Lithography (PPL)-Induced Site-Specific Click Chemistryfor the Formation of Functional Glycan Arrays, Small, 2012, 8,2000–2005.[Crossref]
  • [73] Xie Z., Zhou Y., Hedrick J. L., Chen P.-C., He S., Shahjamali M.M., Wang S., Zheng Z., Mirkin C. A., On-Tip Photo-ModulatedMolecular Printing, Angew. Chem. Int. Ed. Engl., 2015, 54,12894–12899.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nanofab-2015-0005
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.