Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

Expanding on the Structural Diversity of Flavone-
Derived RutheniumII(ƞ6-arene) Anticancer Agents

Content

Title variants

Languages of publication

EN

Abstracts

EN
3-Hydroxyflavones belong to the naturally
occurring class of flavonoids and have been extensively
studied with regard to medicinal application. Moreover,
it has been demonstrated that these compounds
act as bioactive chelates to the ruthenium(II)–arene
moiety. Such organometallic complexes have shown
promising anticancer activity against tumor cells via a
multitargeting mode of action, interacting with DNA and
inhibiting topoisomerase IIα. In this paper, we present
the synthesis and characterization of an extended series
of 3-hydroxyflavone ligands and their corresponding
ruthenium-p-cymene complexes to study the impact of
substitution pattern as well as of electron-withdrawing
and –donating substituents at the flavonol-phenyl
group. The ligands and complexes were characterized
by elemental analysis, ESI-MS, 1D as well as 2D NMR
spectroscopy. The structures of four Ru(η6-p-cymene)
complexes were determined in solid state by single-crystal
X-ray diffraction, and the impact of the substitution
pattern with regard to in vitro anticancer activity in human
cancer cell lines is discussed. Structural differences,
calculated octanol-water partition coefficients (clogP)
of the flavonols and aqueous solubility were used to
rationalize the finding that chlorido[3-(oxo-κO)-2-(3,5-
dimethoxyphenyl)-chromen-4-onato-κO](η6-p-cymene)ruthenium(II) 2b exhibits the highest cytotoxicity with
IC50 values in the low μM range in all tested cell lines.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

online
7 - 12 - 2015

Contributors

author
  • School of Chemical
    Sciences, University of Auckland, Private Bag 92019, Auckland 1142,
    New Zealand
  • School of Chemical
    Sciences, University of Auckland, Private Bag 92019, Auckland 1142,
    New Zealand
author
  • School of Chemical
    Sciences, University of Auckland, Private Bag 92019, Auckland 1142,
    New Zealand
author
  • University of Vienna, Faculty of Chemistry, Institute of
    Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
  • University of Vienna, Faculty of Chemistry, Institute of
    Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
  • University of Vienna, Research Platform “Translational Cancer
    Therapy Research”, Waehringer Str. 42, A-1090 Vienna, Austria
  • University of Vienna, Faculty of Chemistry, Institute of
    Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
  • University of Vienna, Research Platform “Translational Cancer
    Therapy Research”, Waehringer Str. 42, A-1090 Vienna, Austria
  • University of Vienna, Faculty of Chemistry, Institute of
    Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria
  • University of Vienna, Research Platform “Translational Cancer
    Therapy Research”, Waehringer Str. 42, A-1090 Vienna, Austria
  • School of Chemical
    Sciences, University of Auckland, Private Bag 92019, Auckland 1142,
    New Zealand

References

  • [1] Workman, P., Collins, I. Modern Cancer Drug Discovery:Integrating Targets, Technologies, and Treatments forPersonalized Medicine. In Cancer Drug Design and Discovery, 2nded.; Neidle, S., Ed. Academic Press: San Diego, 2014; pp 3-53.
  • [2] Klein, A.V., Hambley, T.W. Platinum-Based Anticancer Agents. InLigand Design in Medicinal Inorganic Chemistry, John Wiley &Sons, Ltd: 2014; pp 9-45.
  • [3] Primik, M.F., Filak, L.K., Arion, V.B. Metal-Based Indolobenzazepinesand Indoloquinolines: From Moderate CDK Inhibitorsto Potential Antitumor Drugs. In Advances in OrganometallicChemistry and Catalysis, John Wiley & Sons, Inc.: 2013; pp605-617.
  • [4] Oehninger, L., Stefanopoulou, M., Alborzinia, H., Schur, J.,Ludewig, S., Namikawa, K., Munoz-Castro, A., Koster, R.W.,Baumann, K., Wolfl, S., Sheldrick, W.S., Ott, I., Evaluationof arene ruthenium(II) N-heterocyclic carbene complexes asorganometallics interacting with thiol and selenol containingbiomolecules, Dalton Trans., 2013; 42, 1657-1666.[WoS]
  • [5] Kandioller, W., Balsano, E., Meier, S.M., Jungwirth, U., Goschl,S., Roller, A., Jakupec, M.A., Berger, W., Keppler, B.K., Hartinger,C.G., Organometallic anticancer complexes of lapachol: metalcentre-dependent formation of reactive oxygen species andcorrelation with cytotoxicity, Chem. Commun., 2013; 49,3348-3350.[WoS][Crossref]
  • [6] Ang, W.H., De Luca, A., Chapuis-Bernasconi, C., Juillerat-Jeanneret, L., Lo Bello, M., Dyson, P.J., OrganometallicRuthenium Inhibitors of Glutathione-S-Transferase P1-1 asAnticancer Drugs, ChemMedChem, 2007; 2, 1799-1806.[Crossref][WoS]
  • [7] Ang, W.H., Parker, L.J., De Luca, A., Juillerat-Jeanneret, L.,Morton, C.J., Lo Bello, M., Parker, M.W., Dyson, P.J., RationalDesign of an Organometallic Glutathione Transferase Inhibitor,Angew. Chem., Int. Ed. Engl., 2009; 48, 3854-3857.
  • [8] Hanif, M., Nazarov, A.A., Legin, A., Groessl, M., Arion, V.B.,Jakupec, M.A., Tsybin, Y.O., Dyson, P.J., Keppler, B.K., Hartinger,C.G., Maleimide-functionalised organoruthenium anticanceragents and their binding to thiol-containing biomolecules,Chem. Commun., 2012; 48, 1475-1477.[WoS][Crossref]
  • [9] Haquette, P., Salmain, M., Svedlung, K., Martel, A., Rudolf, B.,Zakrzewski, J., Cordier, S., Roisnel, T., Fosse, C., Jaouen, G.,Cysteine-Specific, Covalent Anchoring of Transition OrganometallicComplexes to the Protein Papain from Carica papaya,ChemBioChem, 2007; 8, 224-231.[WoS][Crossref]
  • [10] Tan, Y.Q., Dyson, P.J., Ang, W.H., Acetal-functionalized RAPTAcomplexes for conjugation and labeling, Organometallics, 2011;30, 5965-5971.[WoS][Crossref]
  • [11] Babak, M.V., Plażuk, D., Meier, S.M., Arabshahi, H.J., Reynisson,J., Rychlik, B., Błauż, A., Szulc, K., Hanif, M., Strobl, S., Roller,A., Keppler, B.K., Hartinger, C.G., Half-Sandwich Ruthenium(II)Biotin Conjugates as Biological Vectors to Cancer Cells, Chem.Eur. J., 2015; 21, 5110-5117.[Crossref]
  • [12] Goldbach, R.E., Rodriguez-Garcia, I., van Lenthe, J.H.,Siegler, M.A., Bonnet, S., N-Acetylmethionine and Biotin asPhotocleavable Protective Groups for Ruthenium PolypyridylComplexes, Chem. Eur. J., 2011; 17, 9924-9929.[WoS][Crossref]
  • [13] Ang, W.H., Daldini, E., Juillerat-Jeanneret, L., Dyson, P.J.,Strategy To Tether Organometallic Ruthenium-Arene AnticancerCompounds to Recombinant Human Serum Albumin, Inorg.Chem., 2007; 46, 9048-9050.
  • [14] Pagano, N., Wong, E.Y., Breiding, T., Liu, H., Wilbuer, A.,Bregman, H., Shen, Q., Diamond, S.L., Meggers, E., From Imideto Lactam Metallo-pyridocarbazoles: Distinct Scaffolds for theDesign of Selective Protein Kinase Inhibitors, J. Org. Chem.,2009; 74, 8997-9009.[WoS][Crossref]
  • [15] Nazarov, A.A., Hartinger, C.G., Dyson, P.J., Opening the lidon piano-stool complexes: An account of ruthenium(II)-arenecomplexes with medicinal applications, J. Organomet. Chem.,2014; 751, 251-260.
  • [16] Kurzwernhart, A., Kandioller, W., Bachler, S., Bartel, C., Martic,S., Buczkowska, M., Muhlgassner, G., Jakupec, M.A., Kraatz,H.B., Bednarski, P.J., Arion, V.B., Marko, D., Keppler, B.K.,Hartinger, C.G., Structure-Activity Relationships of TargetedRuII(η6-p-Cymene) Anticancer Complexes with Flavonol-DerivedLigands, J. Med. Chem., 2012; 55, 10512-10522.[Crossref]
  • [17] Kurzwernhart, A., Kandioller, W., Bartel, C., Bachler, S., Trondl,R., Muhlgassner, G., Jakupec, M.A., Arion, V.B., Marko, D.,Keppler, B.K., Hartinger, C.G., Targeting the DNA-topoisomerasecomplex in a double-strike approach with a topoisomeraseinhibiting moiety and covalent DNA binder, Chem. Commun.,2012; 48, 4839-4841.[Crossref][WoS]
  • [18] Kurzwernhart, A., Kandioller, W., Enyedy, E.A., Novak, M.,Jakupec, M.A., Keppler, B.K., Hartinger, C.G., 3-Hydroxyflavonesvs. 3-hydroxyquinolinones: structure-activity relationshipsand stability studies on RuII(arene) anticancer complexes withbiologically active ligands, Dalton Trans., 2013; 42, 6193-6202.[WoS]
  • [19] Schwarz, M.B., Kurzwernhart, A., Roller, A., Kandioller, W.,Keppler, B.K., Hartinger, C.G., Rhodium(Cp*) Compounds withFlavone-derived Ligand Systems: Synthesis and Characterization,Z. Anorg. Allg. Chem., 2013; 639, 1648-1654.
  • [20] Prajapati, R., Dubey, S.K., Gaur, R., Koiri, R.K., Maurya, B.K.,Trigun, S.K., Mishra, L., Structural characterization andcytotoxicity studies of ruthenium(II)–dmso–chloro complexesof chalcone and flavone derivatives, Polyhedron, 2010; 29,1055-1061.[Crossref]
  • [21] el Amrani, F.B.-A., Perelló, L., Borrás, J., Torres, L., Developmentof Novel DNA Cleavage Systems Based on Copper Complexes.Synthesis and Characterisation of Cu(II) Complexes of Hydroxyflavones,Met. Based Drugs, 2000; 7, 365-370.
  • [22] Dangleterre, L., Cornard, J.-P., Interaction of lead(II) chloridewith hydroxyflavones in methanol: A spectroscopic study,Polyhedron, 2005; 24, 1593-1598.[Crossref]
  • [23] Sathish, S., Narayan, G., Rao, N., Janardhana, C., ASelf-Organized Ensemble of Fluorescent 3-Hydroxyflavone-Al(III)Complex as Sensor for Fluoride and Acetate Ions, J. Fluoresc.,2007; 17, 1-5.[WoS]
  • [24] Santos, J.P., Zaniquelli, M.E.D., De Giovani, W.F., Galembeck,S.E., Aluminum ion complex formation with 3-hydroxyflavone inLangmuir and Langmuir–Blodgett films, Colloids Surf., A, 2002;198–200, 569-576.
  • [25] Lapouge, C., Dangleterre, L., Cornard, J.-P., Spectroscopic andTheoretical Studies of the Zn(II) Chelation with Hydroxyflavones,J. Phys. Chem. A, 2006; 110, 12494-12500.[Crossref]
  • [26] Nichenametla, S.N., Taruscio, T.G., Barney, D.L., Exon, J.H.,A Review of the Effects and Mechanisms of Polyphenolics inCancer, Crit. Rev. Food Sci, Nutr., 2006; 46, 161-183.
  • [27] Fotsis, T., Pepper, M.S., Aktas, E., Breit, S., Rasku, S.,Adlercreutz, H., Wähälä, K., Montesano, R., Schweigerer, L.,Flavonoids, Dietary-derived Inhibitors of Cell Proliferation and inVitro Angiogenesis, Cancer Res., 1997; 57, 2916-2921.
  • [28] Harborne, J.B., Williams, C.A., Advances in flavonoid researchsince 1992, Phytochemistry, 2000; 55, 481-504.
  • [29] Ross, J.A., Kasum, C.M., Dietary Flavonoids: Bioavailability,Metabolic Effects, and Safety, Annu. Rev. Nutr., 2002; 22, 19.[Crossref][WoS]
  • [30] Cushnie, T.P.T., Lamb, A.J., Antimicrobial activity of flavonoids,Int. J. Antimicrob. Agents, 2005; 26, 343-356.
  • [31] García-Lafuente, A., Guillamón, E., Villares, A., Rostagno,M., Martínez, J., Flavonoids as anti-inflammatory agents:implications in cancer and cardiovascular disease, Inflamm.Res., 2009; 58, 537-552.
  • [32] Chen, Z.-T., Chu, H.-L., Chyau, C.-C., Chu, C.-C., Duh, P.-D.,Protective effects of sweet orange (Citrus sinensis) peel and theirbioactive compounds on oxidative stress, Food Chem., 2012;135, 2119-2127.
  • [33] Chaudhuri, S., Banerjee, A., Basu, K., Sengupta, B., Sengupta,P.K., Interaction of flavonoids with red blood cell membranelipids and proteins: Antioxidant and antihemolytic effects, Int. J.Biol. Macromol., 2007; 41, 42-48.[Crossref][WoS]
  • [34] Shen, K.-H., Chen, Z.-T., Duh, P.-D., Cytotoxic Effect of Eucalyptuscitriodora Resin on Human Hepatoma HepG2 Cells, Am. J. Chin.Med., 2012; 40, 399-413.[Crossref][WoS]
  • [35] Kandioller, W., Hartinger, C.G., Nazarov, A.A., Kuznetsov, M.L.,John, R.O., Bartel, C., Jakupec, M.A., Arion, V.B., Keppler, B.K.,From Pyrone to Thiopyrone Ligands−Rendering Maltol-DerivedRuthenium(II)−Arene Complexes That Are Anticancer Active inVitro, Organometallics, 2009; 28, 4249-4251.[Crossref][WoS]
  • [36] Kandioller, W., Hartinger, C.G., Nazarov, A.A., Bartel, C., Skocic,M., Jakupec, M.A., Arion, V.B., Keppler, B.K., Maltol-derivedruthenium-cymene complexes with tumor inhibiting properties:the impact of ligand-metal bond stability on anticancer activityin vitro, Chem. Eur. J., 2009; 15, 12283-12291.[Crossref]
  • [37] Kandioller, W., Hartinger, C.G., Nazarov, A.A., Kasser, J., John, R.,Jakupec, M.A., Arion, V.B., Dyson, P.J., Keppler, B.K., Tuning theanticancer activity of maltol-derived ruthenium complexes byderivatization of the 3-hydroxy-4-pyrone moiety, J. Organomet.Chem., 2009; 694, 922-929.
  • [38] Bradley, D., Williams, G., Lawton, M., Drying of Organic Solvents:Quantitative Evaluation of the Efficiency of Several Desiccants, J.Org. Chem., 2010; 75, 8351-8354.[WoS]
  • [39] Bennett, M.A., Smith, A.K., Arene ruthenium(II) complexesformed by dehydrogenation of cyclohexadienes withruthenium(III) trichloride, J. Chem. Soc., Dalton Trans., 1974, 233.
  • [40] Sheldrick, G.M., A short history of SHELX, Acta Crystallogr., Sect.A: Found. Crystallogr., 2008; A64, 112-122.[WoS]
  • [41] Korch, C., Spillman, M.A., Jackson, T.A., Jacobsen, B.M., Murphy,S.K., Lessey, B.A., Jordan, V.C., Bradford, A.P., DNA profilinganalysis of endometrial and ovarian cell lines reveals misidentification,redundancy and contamination, Gynecol. Oncol., 2012;127, 241-248.[WoS]
  • [42] Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone,D., Ertl, P., Palyulin, V.A., Radchenko, E.V., Zefirov, N.S.,Makarenko, A.S., Tanchuk, V.Y., Prokopenko, V.V., Virtualcomputational chemistry laboratory--design and description, J.Comput. Aided Mol. Des., 2005; 19, 453-463.[Crossref]
  • [43] Bennett, M., Burke, A.J., O’Sullivan, W.I., Aspects of theAlgar-Flynn-Oyamada (AFO) reaction, Tetrahedron, 1996; 52,7163-7178.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_medr-2015-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.