Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

Genesis of ER Stress in Huntington’s Disease

Content

Title variants

Languages of publication

EN

Abstracts

EN
Recent research has identified ER stress as a
major mechanism implicated in cytotoxicity in many
neurodegenerative diseases, among them Huntington’s
disease. This genetic disorder is of late-onset, progressive
and fatal, affecting cognition and movement. There is
presently no cure nor any effective therapy for the disease.
This review focuses on recent findings that shed light on
the mechanisms of the advent and development of ER
stress in Huntington’s disease and on its implications,
highlighting possible therapeutic avenues that are being
or could be explored.

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

accepted
15 - 7 - 2015
online
28 - 8 - 2015
received
8 - 6 - 2015

Contributors

  • Department of Cell Research
    and Immunology, George Wise Faculty of Life sciences, Tel Aviv
    University, Tel Aviv 69978, Israel
  • Sagol School of Neuroscience, Tel
    Aviv University, Tel Aviv 69978, Israel
author
  • Department of Cell Research
    and Immunology, George Wise Faculty of Life sciences, Tel Aviv
    University, Tel Aviv 69978, Israel
  • Sagol School of Neuroscience, Tel
    Aviv University, Tel Aviv 69978, Israel
  • Department of Cell Research
    and Immunology, George Wise Faculty of Life sciences, Tel Aviv
    University, Tel Aviv 69978, Israel
  • Sagol School of Neuroscience, Tel
    Aviv University, Tel Aviv 69978, Israel

References

  • [1] Pennuto, M., Palazzolo, I., and Poletti, A., Post-translationalmodifications of expanded polyglutamine proteins: impact onneurotoxicity, Hum Mol Genet, 2009; 18(R1): R40-47.[Crossref]
  • [2] Shao, J., and Diamond, M.I., Polyglutamine diseases: emergingconcepts in pathogenesis and therapy, Hum Mol Genet, 2007;16 Spec No. 2: R115-123.[Crossref]
  • [3] Hatters, D.M., Putting huntingtin “aggregation” in view withwindows into the cellular milieu, Current topics in medicinalchemistry, 2012; 12(22): 2611-2622.
  • [4] Sakahira, H., Breuer, P., Hayer-Hartl, M.K., and Hartl, F.U.,Molecular chaperones as modulators of polyglutamine proteinaggregation and toxicity, Proc Natl Acad Sci U S A, 2002; 99Suppl 4: 16412-16418.[Crossref]
  • [5] Lajoie, P., and Snapp, E.L., Formation and toxicity of solublepolyglutamine oligomers in living cells, PLoS One, 2010; 5(12):e15245.
  • [6] Schaffar, G., Breuer, P., Boteva, R., Behrends, C., Tzvetkov,N., Strippel, N., Sakahira, H., Siegers, K., Hayer-Hartl, M.,and Hartl, F.U., Cellular toxicity of polyglutamine expansionproteins: mechanism of transcription factor deactivation, MolCell, 2004; 15(1): 95-105.[Crossref]
  • [7] Takahashi, T., Kikuchi, S., Katada, S., Nagai, Y., Nishizawa,M., and Onodera, O., Soluble polyglutamine oligomers formedprior to inclusion body formation are cytotoxic, Hum Mol Genet,2008; 17(3): 345-356.[Crossref]
  • [8] Leitman, J., Ulrich Hartl, F., and Lederkremer, G.Z., Solubleforms of polyQ-expanded huntingtin rather than largeaggregates cause endoplasmic reticulum stress, Nat Commun,2013; 4: 2753.
  • [9] Ochaba, J., Lukacsovich, T., Csikos, G., Zheng, S., Margulis, J.,Salazar, L., Mao, K., Lau, A.L., Yeung, S.Y., Humbert, S., et al.,Potential function for the Huntingtin protein as a scaffold forselective autophagy, Proc Natl Acad Sci U S A, 2014; 111(47):16889-16894.[Crossref]
  • [10] Rui, Y.N., Xu, Z., Patel, B., Chen, Z., Chen, D., Tito, A., David, G.,Sun, Y., Stimming, E.F., Bellen, H.J., et al., Huntingtin functionsas a scaffold for selective macroautophagy, Nat Cell Biol, 2015;17(3): 262-275.[Crossref]
  • [11] Lee, J.H., Tecedor, L., Chen, Y.H., Monteys, A.M., Sowada, M.J.,Thompson, L.M., and Davidson, B.L., Reinstating aberrantmTORC1 activity in Huntington’s disease mice improves diseasephenotypes, Neuron, 2015; 85(2): 303-315.[Crossref]
  • [12] Imarisio, S., Carmichael, J., Korolchuk, V., Chen, C.W., Saiki, S.,Rose, C., Krishna, G., Davies, J.E., Ttofi, E., Underwood, B.R.,et al., Huntington’s disease: from pathology and genetics topotential therapies, Biochem J, 2008; 412(2): 191-209.
  • [13] Kim, S.D., and Fung, V.S., An update on Huntington’s disease:from the gene to the clinic, Current opinion in neurology, 2014;27(4): 477-483.
  • [14] Andre, V.M., Cepeda, C., and Levine, M.S., Dopamine andglutamate in Huntington’s disease: A balancing act, CNSneuroscience & therapeutics, 2010; 16(3): 163-178.
  • [15] Estrada-Sanchez, A.M., Montiel, T., Segovia, J., and Massieu,L., Glutamate toxicity in the striatum of the R6/2 Huntington’sdisease transgenic mice is age-dependent and correlates withdecreased levels of glutamate transporters, Neurobiology ofdisease, 2009; 34(1): 78-86.
  • [16] Heng, M.Y., Detloff, P.J., Wang, P.L., Tsien, J.Z., and Albin, R.L.,In vivo evidence for NMDA receptor-mediated excitotoxicity in amurine genetic model of Huntington disease, J Neurosci, 2009;29(10): 3200-3205.[Crossref]
  • [17] Bossy-Wetzel, E., Petrilli, A., and Knott, A.B., Mutant huntingtinand mitochondrial dysfunction, Trends in neurosciences, 2008;31(12): 609-616.
  • [18] Quintanilla, R.A., and Johnson, G.V., Role of mitochondrialdysfunction in the pathogenesis of Huntington’s disease, Brainresearch bulletin, 2009; 80(4-5): 242-247.[Crossref]
  • [19] Browne, S.E., and Beal, M.F., Oxidative damage in Huntington’sdisease pathogenesis, Antioxidants & redox signaling, 2006;8(11-12): 2061-2073.
  • [20] Brustovetsky, N., Mutant Huntingtin and Elusive Defects inOxidative Metabolism and Mitochondrial Calcium Handling,Molecular neurobiology, 2015.
  • [21] Yano, H., Baranov, S.V., Baranova, O.V., Kim, J., Pan, Y.,Yablonska, S., Carlisle, D.L., Ferrante, R.J., Kim, A.H., andFriedlander, R.M., Inhibition of mitochondrial protein import bymutant huntingtin, Nature neuroscience, 2014; 17(6): 822-831.[Crossref]
  • [22] Brandstaetter, H., Kruppa, A.J., and Buss, F., Huntingtinis required for ER-to-Golgi transport and for secretoryvesicle fusion at the plasma membrane, Disease models &mechanisms, 2014; 7(12): 1335-1340.
  • [23] Gunawardena, S., and Goldstein, L.S., Polyglutamine diseasesand transport problems: deadly traffic jams on neuronalhighways, Archives of neurology, 2005; 62(1): 46-51.[Crossref]
  • [24] Trushina, E., Dyer, R.B., Badger, J.D., 2nd, Ure, D., Eide, L.,Tran, D.D., Vrieze, B.T., Legendre-Guillemin, V., McPherson,P.S., Mandavilli, B.S., et al., Mutant huntingtin impairsaxonal trafficking in mammalian neurons in vivo and in vitro,Molecular and cellular biology, 2004; 24(18): 8195-8209.
  • [25] Becanovic, K., Pouladi, M.A., Lim, R.S., Kuhn, A., Pavlidis, P.,Luthi-Carter, R., Hayden, M.R., and Leavitt, B.R., Transcriptionalchanges in Huntington disease identified using genome-wideexpression profiling and cross-platform analysis, Hum MolGenet, 2010; 19(8): 1438-1452.[Crossref]
  • [26] Buckley, N.J., Johnson, R., Zuccato, C., Bithell, A., andCattaneo, E., The role of REST in transcriptional and epigeneticdysregulation in Huntington’s disease, Neurobiology ofdisease, 2010; 39(1): 28-39.
  • [27] Finkbeiner, S., and Mitra, S., The ubiquitin-proteasomepathway in Huntington’s disease, ScientificWorldJournal,2008; 8: 421-433.
  • [28] Ortega, Z., Diaz-Hernandez, M., and Lucas, J.J., Is the ubiquitinproteasomesystem impaired in Huntington’s disease?, Cell MolLife Sci, 2007; 64(17): 2245-2257.[Crossref]
  • [29] Bennett, E.J., Shaler, T.A., Woodman, B., Ryu, K.Y., Zaitseva,T.S., Becker, C.H., Bates, G.P., Schulman, H., and Kopito,R.R., Global changes to the ubiquitin system in Huntington’sdisease, Nature, 2007; 448(7154): 704-708.
  • [30] Hipp, M.S., Patel, C.N., Bersuker, K., Riley, B.E., Kaiser, S.E.,Shaler, T.A., Brandeis, M., and Kopito, R.R., Indirect inhibitionof 26S proteasome activity in a cellular model of Huntington’sdisease, J Cell Biol, 2012; 196(5): 573-587.[Crossref]
  • [31] Tsvetkov, A.S., Arrasate, M., Barmada, S., Ando, D.M.,Sharma, P., Shaby, B.A., and Finkbeiner, S., Proteostasis ofpolyglutamine varies among neurons and predicts neurodegeneration,Nature chemical biology, 2013; 9(9): 586-592.[Crossref]
  • [32] Duennwald, M.L., and Lindquist, S., Impaired ERAD and ERstress are early and specific events in polyglutamine toxicity,Genes Dev, 2008; 22(23): 3308-3319.[Crossref]
  • [33] Yang, H., Liu, C., Zhong, Y., Luo, S., Monteiro, M.J., and Fang,S., Huntingtin interacts with the cue domain of gp78 andinhibits gp78 binding to ubiquitin and p97/VCP, PLoS One,2010; 5(1): e8905.
  • [34] Benyair, R., Ron, E., and Lederkremer, G.Z., Protein qualitycontrol, retention, and degradation at the endoplasmicreticulum, Int Rev Cell Mol Biol, 2011; 292: 197-280.
  • [35] Smith, M.H., Ploegh, H.L., and Weissman, J.S., Road toruin: targeting proteins for degradation in the endoplasmicreticulum, Science, 2011; 334(6059): 1086-1090.
  • [36] Carnemolla, A., Fossale, E., Agostoni, E., Michelazzi, S.,Calligaris, R., De Maso, L., Del Sal, G., MacDonald, M.E., andPersichetti, F., Rrs1 is involved in endoplasmic reticulum stressresponse in Huntington disease, J Biol Chem, 2009; 284(27):18167-18173.
  • [37] Reijonen, S., Putkonen, N., Norremolle, A., Lindholm, D.,and Korhonen, L., Inhibition of endoplasmic reticulum stresscounteracts neuronal cell death and protein aggregationcaused by N-terminal mutant huntingtin proteins, Exp Cell Res,2008; 314(5): 950-960.
  • [38] Roussel, B.D., Kruppa, A.J., Miranda, E., Crowther, D.C., Lomas,D.A., and Marciniak, S.J., Endoplasmic reticulum dysfunction inneurological disease, Lancet Neurol, 2013; 12(1): 105-118.[Crossref]
  • [39] Vidal, R., Caballero, B., Couve, A., and Hetz, C., Convergingpathways in the occurrence of endoplasmic reticulum (ER)stress in Huntington’s disease, Curr Mol Med, 2011; 11(1): 1-12.[Crossref]
  • [40] Reiner, A., Albin, R.L., Anderson, K.D., D’Amato, C.J., Penney,J.B., and Young, A.B., Differential loss of striatal projectionneurons in Huntington disease, Proc Natl Acad Sci U S A, 1988;85(15): 5733-5737.[Crossref]
  • [41] Roze, E., Cahill, E., Martin, E., Bonnet, C., Vanhoutte, P.,Betuing, S., and Caboche, J., Huntington’s Disease and StriatalSignaling, Front Neuroanat, 2011; 5: 55.
  • [42] Subramaniam, S., Sixt, K.M., Barrow, R., and Snyder, S.H.,Rhes, a striatal specific protein, mediates mutant-huntingtincytotoxicity, Science, 2009; 324(5932): 1327-1330.
  • [43] Francelle, L., Galvan, L., Gaillard, M.C., Petit, F., Bernay,B., Guillermier, M., Bonvento, G., Dufour, N., Elalouf, J.M.,Hantraye, P., et al., The striatal long noncoding RNA Abhd11osis neuroprotective against an N-terminal fragment of mutanthuntingtin in vivo, Neurobiology of aging, 2015; 36(3):1601.e1607-1616.
  • [44] Leitman, J., Barak, B., Benyair, R., Shenkman, M., Ashery, U.,Hartl, F.U., and Lederkremer, G.Z., ER stress-induced eIF2-alphaphosphorylation underlies sensitivity of striatal neurons topathogenic huntingtin, PLoS One, 2014; 9(3): e90803.
  • [45] Romisch, K., Endoplasmic reticulum-associated degradation,Annu Rev Cell Dev Biol, 2005; 21: 435-456.[Crossref]
  • [46] Hirsch, C., Gauss, R., Horn, S.C., Neuber, O., and Sommer, T.,The ubiquitylation machinery of the endoplasmic reticulum,Nature, 2009; 458(7237): 453-460.
  • [47] Brodsky, J.L., Cleaning Up: ER-Associated Degradation to theRescue, Cell, 2012; 151(6): 1163-1167.
  • [48] Sommer, T., and Wolf, D.H., The ubiquitin-proteasome-system,Biochim Biophys Acta, 2014; 1843(1): 1.
  • [49] Lederkremer, G.Z., Glycoprotein folding, quality control andER-associated degradation, Curr Opin Struct Biol, 2009; 19(5):515-523.[Crossref]
  • [50] Okuda-Shimizu, Y., and Hendershot, L.M., Characterization ofan ERAD pathway for nonglycosylated BiP substrates, whichrequire Herp, Mol Cell, 2007; 28(4): 544-554.[Crossref]
  • [51] Forster, M.L., Sivick, K., Park, Y.N., Arvan, P., Lencer, W.I.,and Tsai, B., Protein disulfide isomerase-like proteins playopposing roles during retrotranslocation, J Cell Biol, 2006;173(6): 853-859.
  • [52] Nakatsukasa, K., and Brodsky, J.L., The recognition andretrotranslocation of misfolded proteins from the endoplasmicreticulum, Traffic, 2008; 9(6): 861-870.[Crossref]
  • [53] Kamhi-Nesher, S., Shenkman, M., Tolchinsky, S., Fromm, S.V.,Ehrlich, R., and Lederkremer, G.Z., A novel quality controlcompartment derived from the endoplasmic reticulum, Mol BiolCell, 2001; 12(6): 1711-1723.[Crossref]
  • [54] Groisman, B., Shenkman, M., Ron, E., and Lederkremer, G.Z.,Mannose trimming is required for delivery of a glycoproteinfrom EDEM1 to XTP3-B and to late endoplasmic reticulumassociateddegradation steps, J Biol Chem, 2011; 286(2):1292-1300.
  • [55] Kondratyev, M., Avezov, E., Shenkman, M., Groisman, B., andLederkremer, G.Z., PERK-dependent compartmentalization ofERAD and unfolded protein response machineries during ERstress, Exp Cell Res, 2007; 313(16): 3395-3407.
  • [56] Leitman, J., Ron, E., Ogen-Shtern, N., and Lederkremer, G.Z.,Compartmentalization of Endoplasmic Reticulum QualityControl and ER-Associated Degradation Factors, DNA Cell Biol,2012.
  • [57] Frenkel, Z., Gregory, W., Kornfeld, S., and Lederkremer,G.Z., Endoplasmic reticulum-associated degradation ofmammalian glycoproteins involves sugar chain trimming toMan6-5GlcNAc2, J Biol Chem, 2003; 278(36): 34119-34124.
  • [58] Helenius, A., and Aebi, M., Roles of N-linked glycans inthe endoplasmic reticulum, Annu Rev Biochem, 2004; 73:1019-1049.[Crossref]
  • [59] Avezov, E., Frenkel, Z., Ehrlich, M., Herscovics, A., andLederkremer, G.Z., Endoplasmic reticulum (ER) mannosidaseI is compartmentalized and required for N-glycan trimming toMan5-6GlcNAc2 in glycoprotein ER-associated degradation,Mol Biol Cell, 2008; 19(1): 216-225.
  • [60] Benyair, R., Ogen-Shtern, N., Mazkereth, N., Shai, B., Ehrlich,M., and Lederkremer, G.Z., Mammalian ER mannosidase Iresides in quality control vesicles, where it encounters itsglycoprotein substrates, Mol Biol Cell, 2015; 26(2): 172-184.[Crossref]
  • [61] Benyair, R., Ogen-Shtern, N., and Lederkremer, G.Z., Glycanregulation of ER-associated degradation through compartmentalization,Seminars in cell & developmental biology, 2015; 41:99-109.
  • [62] Hosokawa, N., Tremblay, L.O., Sleno, B., Kamiya, Y., Wada, I.,Nagata, K., Kato, K., and Herscovics, A., EDEM1 acceleratesthe trimming of alpha1,2-linked mannose on the C branch ofN-glycans, Glycobiology, 2010; 20(5): 567-575.
  • [63] Ninagawa, S., Okada, T., Sumitomo, Y., Kamiya, Y., Kato, K.,Horimoto, S., Ishikawa, T., Takeda, S., Sakuma, T., Yamamoto,T., et al., EDEM2 initiates mammalian glycoprotein ERAD bycatalyzing the first mannose trimming step, J Cell Biol, 2014;206(3): 347-356.
  • [64] Olivari, S., Cali, T., Salo, K.E., Paganetti, P., Ruddock, L.W.,and Molinari, M., EDEM1 regulates ER-associated degradationby accelerating de-mannosylation of folding-defectivepolypeptides and by inhibiting their covalent aggregation,Biochemical and biophysical research communications, 2006;349(4): 1278-1284.
  • [65] Ron, E., Shenkman, M., Groisman, B., Izenshtein, Y., Leitman,J., and Lederkremer, G.Z., Bypass of glycan-dependentglycoprotein delivery to ERAD by up-regulated EDEM1, Mol BiolCell, 2011; 22(21): 3945-3954.
  • [66] Wang, X., Herr, R.A., Chua, W.J., Lybarger, L., Wiertz, E.J., andHansen, T.H., Ubiquitination of serine, threonine, or lysineresidues on the cytoplasmic tail can induce ERAD of MHC-I byviral E3 ligase mK3, J Cell Biol, 2007; 177(4): 613-624.[Crossref]
  • [67] Gardner, R.G., Swarbrick, G.M., Bays, N.W., Cronin, S.R.,Wilhovsky, S., Seelig, L., Kim, C., and Hampton, R.Y.,Endoplasmic reticulum degradation requires lumen to cytosolsignaling. Transmembrane control of Hrd1p by Hrd3p, J CellBiol, 2000; 151(1): 69-82.
  • [68] Deak, P.M., and Wolf, D.H., Membrane topology and functionof Der3/Hrd1p as a ubiquitin-protein ligase (E3) involvedin endoplasmic reticulum degradation, J Biol Chem, 2001;276(14): 10663-10669.
  • [69] Kikkert, M., Doolman, R., Dai, M., Avner, R., Hassink, G.,van Voorden, S., Thanedar, S., Roitelman, J., Chau, V., andWiertz, E., Human HRD1 is an E3 ubiquitin ligase involved indegradation of proteins from the endoplasmic reticulum, J BiolChem, 2004; 279(5): 3525-3534.
  • [70] Fang, S., Ferrone, M., Yang, C., Jensen, J.P., Tiwari, S., andWeissman, A.M., The tumor autocrine motility factor receptor,gp78, is a ubiquitin protein ligase implicated in degradationfrom the endoplasmic reticulum, Proc Natl Acad Sci U S A,2001; 98(25): 14422-14427.[Crossref]
  • [71] Kreft, S.G., Wang, L., and Hochstrasser, M., Membranetopology of the yeast endoplasmic reticulum-localizedubiquitin ligase Doa10 and comparison with its humanortholog TEB4 (MARCH-VI), J Biol Chem, 2006; 281(8):4646-4653.
  • [72] Hassink, G., Kikkert, M., van Voorden, S., Lee, S.J., Spaapen,R., van Laar, T., Coleman, C.S., Bartee, E., Fruh, K., Chau, V., etal., TEB4 is a C4HC3 RING finger-containing ubiquitin ligaseof the endoplasmic reticulum, Biochem J, 2005; 388(Pt 2):647-655.
  • [73] Mueller, B., Lilley, B.N., and Ploegh, H.L., SEL1L, the homologueof yeast Hrd3p, is involved in protein dislocation from themammalian ER, J Cell Biol, 2006; 175(2): 261-270.
  • [74] Lilley, B.N., and Ploegh, H.L., A membrane protein required fordislocation of misfolded proteins from the ER, Nature, 2004;429(6994): 834-840.
  • [75] Greenblatt, E.J., Olzmann, J.A., and Kopito, R.R., Derlin-1 isa rhomboid pseudoprotease required for the dislocation ofmutant alpha-1 antitrypsin from the endoplasmic reticulum, NatStruct Mol Biol, 2011; 18(10): 1147-1152.
  • [76] Kokame, K., Agarwala, K.L., Kato, H., and Miyata, T., Herp, anew ubiquitin-like membrane protein induced by endoplasmicreticulum stress, J Biol Chem, 2000; 275(42): 32846-32853.
  • [77] Schulze, A., Standera, S., Buerger, E., Kikkert, M., vanVoorden, S., Wiertz, E., Koning, F., Kloetzel, P.M., and Seeger,M., The ubiquitin-domain protein HERP forms a complexwith components of the endoplasmic reticulum associateddegradation pathway, J Mol Biol, 2005; 354(5): 1021-1027.
  • [78] Leitman, J., Shenkman, M., Gofman, Y., Shtern, N.O., Ben-Tal,N., Hendershot, L.M., and Lederkremer, G.Z., Herp coordinatescompartmentalization and recruitment of HRD1 and misfoldedproteins for ERAD, Mol Biol Cell, 2014; 25(7): 1050-1060.
  • [79] Bays, N.W., Wilhovsky, S.K., Goradia, A., Hodgkiss-Harlow, K.,and Hampton, R.Y., HRD4/NPL4 is required for the proteasomalprocessing of ubiquitinated ER proteins, Mol Biol Cell, 2001;12(12): 4114-4128.
  • [80] Ye, Y., Meyer, H.H., and Rapoport, T.A., The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into thecytosol, Nature, 2001; 414(6864): 652-656.
  • [81] Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N., andBar-Nun, S., AAA-ATPase p97/Cdc48p, a cytosolic chaperonerequired for endoplasmic reticulum-associated proteindegradation, Mol Cell Biol, 2002; 22(2): 626-634.[Crossref]
  • [82] Zhao, G., Zhou, X., Wang, L., Li, G., Schindelin, H., and Lennarz,W.J., Studies on peptide:N-glycanase-p97 interaction suggestthat p97 phosphorylation modulates endoplasmic reticulumassociateddegradation, Proc Natl Acad Sci U S A, 2007;104(21): 8785-8790.[Crossref]
  • [83] Yoshida, Y., and Tanaka, K., Lectin-like ERAD players in ER andcytosol, Biochimica et biophysica acta, 2010; 1800(2): 172-180.
  • [84] Gardner, B.M., Pincus, D., Gotthardt, K., Gallagher, C.M.,and Walter, P., Endoplasmic reticulum stress sensing in theunfolded protein response, Cold Spring Harbor perspectives inbiology, 2013; 5(3): a013169.
  • [85] Cao, S.S., and Kaufman, R.J., Unfolded protein response, CurrBiol, 2012; 22(16): R622-626.[Crossref]
  • [86] Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., andRon, D., Dynamic interaction of BiP and ER stress transducersin the unfolded-protein response, Nat Cell Biol, 2000; 2(6):326-332.
  • [87] Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., andWalter, P., On the mechanism of sensing unfolded protein inthe endoplasmic reticulum, Proc Natl Acad Sci U S A, 2005;102(52): 18773-18784.[Crossref]
  • [88] Sidrauski, C., and Walter, P., The transmembrane kinase Ire1pis a site-specific endonuclease that initiates mRNA splicing inthe unfolded protein response, Cell, 1997; 90(6): 1031-1039.
  • [89] Tirasophon, W., Welihinda, A.A., and Kaufman, R.J., A stressresponse pathway from the endoplasmic reticulum to thenucleus requires a novel bifunctional protein kinase/endoribonuclease(Ire1p) in mammalian cells, Genes & development,1998; 12(12): 1812-1824.
  • [90] Tsuru, A., Fujimoto, N., Takahashi, S., Saito, M., Nakamura, D.,Iwano, M., Iwawaki, T., Kadokura, H., Ron, D., and Kohno, K.,Negative feedback by IRE1beta optimizes mucin production ingoblet cells, Proceedings of the National Academy of Sciencesof the United States of America, 2013; 110(8): 2864-2869.
  • [91] Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding,H.P., Clark, S.G., and Ron, D., IRE1 couples endoplasmicreticulum load to secretory capacity by processing the XBP-1mRNA, Nature, 2002; 415(6867): 92-96.
  • [92] Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A.,Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K., et al., Complementarysignaling pathways regulate the unfolded proteinresponse and are required for C. elegans development, Cell,2001; 107(7): 893-903.[Crossref]
  • [93] Li, H., Korennykh, A.V., Behrman, S.L., and Walter, P.,Mammalian endoplasmic reticulum stress sensor IRE1 signalsby dynamic clustering, Proceedings of the National Academy ofSciences of the United States of America, 2010; 107(37): 16113-16118.
  • [94] Lee, A.H., Iwakoshi, N.N., and Glimcher, L.H., XBP-1 regulatesa subset of endoplasmic reticulum resident chaperone genesin the unfolded protein response, Mol Cell Biol, 2003; 23(21):7448-7459.
  • [95] Harding, H.P., Zhang, Y., and Ron, D., Protein translation andfolding are coupled by an endoplasmic-reticulum-residentkinase, Nature, 1999; 397(6716): 271-274.
  • [96] Ishihara, H., Shibasaki, Y., Kizuki, N., Wada, T., Yazaki, Y.,Asano, T., and Oka, Y., Type I phosphatidylinositol-4-phosphate5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinasefamily, The Journal of biological chemistry, 1998; 273(15):8741-8748.
  • [97] Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M.,Sadri, N., Yun, C., Popko, B., Paules, R., et al., An integratedstress response regulates amino acid metabolism andresistance to oxidative stress, Molecular cell, 2003; 11(3):619-633.[Crossref]
  • [98] Rutkowski, D.T., and Kaufman, R.J., All roads lead to ATF4, DevCell, 2003; 4(4): 442-444.
  • [99] Novoa, I., Zeng, H., Harding, H.P., and Ron, D., Feedbackinhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha, J Cell Biol, 2001;153(5): 1011-1022.
  • [100] Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K.,Mammalian transcription factor ATF6 is synthesized as atransmembrane protein and activated by proteolysis inresponse to endoplasmic reticulum stress, Molecular biologyof the cell, 1999; 10(11): 3787-3799.
  • [101] Okada, T., Yoshida, H., Akazawa, R., Negishi, M., and Mori,K., Distinct roles of activating transcription factor 6 (ATF6)and double-stranded RNA-activated protein kinase-likeendoplasmic reticulum kinase (PERK) in transcription duringthe mammalian unfolded protein response, The Biochemicaljournal, 2002; 366(Pt 2): 585-594.
  • [102] Wu, J., and Kaufman, R.J., From acute ER stress to physiologicalroles of the Unfolded Protein Response, Cell death anddifferentiation, 2006; 13(3): 374-384.
  • [103] Senft, D., and Ronai, Z.A., UPR, autophagy, and mitochondriacrosstalk underlies the ER stress response, Trends inbiochemical sciences, 2015; 40(3): 141-148.
  • [104] Gorman, A.M., Healy, S.J., Jager, R., and Samali, A., Stressmanagement at the ER: regulators of ER stress-inducedapoptosis, Pharmacology & therapeutics, 2012; 134(3):306-316.[Crossref]
  • [105] Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali,A., Mediators of endoplasmic reticulum stress-inducedapoptosis, EMBO reports, 2006; 7(9): 880-885.[Crossref]
  • [106] Zhang, K., and Kaufman, R.J., Identification and characterizationof endoplasmic reticulum stress-induced apoptosisin vivo, Methods in enzymology, 2008; 442: 395-419.[Crossref]
  • [107] Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang,Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D., CHOPinduces death by promoting protein synthesis and oxidationin the stressed endoplasmic reticulum, Genes Dev, 2004;18(24): 3066-3077.[Crossref]
  • [108] Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K., and Hayashi,H., TRB3, a novel ER stress-inducible gene, is induced viaATF4-CHOP pathway and is involved in cell death, The EMBOjournal, 2005; 24(6): 1243-1255.[Crossref]
  • [109] Harding, H.P., Novoa, I., Bertolotti, A., Zeng, H., Zhang, Y.,Urano, F., Jousse, C., and Ron, D., Translational regulation inthe cellular response to biosynthetic load on the endoplasmicreticulum, Cold Spring Harb Symp Quant Biol, 2001; 66:499-508.
  • [110] Boehning, D., Patterson, R.L., Sedaghat, L., Glebova, N.O.,Kurosaki, T., and Snyder, S.H., Cytochrome c binds toinositol (1,4,5) trisphosphate receptors, amplifying calciumdependentapoptosis, Nat Cell Biol, 2003; 5(12): 1051-1061.[Crossref]
  • [111] Simmen, T., Aslan, J.E., Blagoveshchenskaya, A.D., Thomas,L., Wan, L., Xiang, Y., Feliciangeli, S.F., Hung, C.H., Crump,C.M., and Thomas, G., PACS-2 controls endoplasmicreticulum-mitochondria communication and Bid-mediatedapoptosis, EMBO J, 2005; 24(4): 717-729.[Crossref]
  • [112] Laude, A.J., and Simpson, A.W., Compartmentalizedsignalling: Ca2+ compartments, microdomains and the manyfacets of Ca2+ signalling, FEBS J, 2009; 276(7): 1800-1816.
  • [113] Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D.,Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., andRizzuto, R., Chaperone-mediated coupling of endoplasmicreticulum and mitochondrial Ca2+ channels, Journal of CellBiology, 2006; 175(6): 901-911.[Crossref]
  • [114] Myhill, N., Lynes, E.M., Nanji, J.A., Blagoveshchenskaya,A.D., Fei, H., Carmine Simmen, K., Cooper, T.J., Thomas, G.,and Simmen, T., The subcellular distribution of calnexin ismediated by PACS-2, Mol Biol Cell, 2008; 19(7): 2777-2788.[Crossref]
  • [115] Hayashi, T., Rizzuto, R., Hajnoczky, G., and Su, T.P., MAM:more than just a housekeeper, Trends Cell Biol, 2009; 19(2):81-88.[Crossref]
  • [116] Higo, T., Hattori, M., Nakamura, T., Natsume, T.,Michikawa, T., and Mikoshiba, K., Subtype-specific andER lumenal environment-dependent regulation of inositol1,4,5-trisphosphate receptor type 1 by ERp44, Cell, 2005;120(1): 85-98.[Crossref]
  • [117] Roderick, H.L., Lechleiter, J.D., and Camacho, P., Cytosolicphosphorylation of calnexin controls intracellular Ca(2+)oscillations via an interaction with SERCA2b, Journal of CellBiology, 2000; 149(6): 1235-1248.
  • [118] Li, Y., and Camacho, P., Ca2+-dependent redox modulationof SERCA 2b by ERp57, Journal of Cell Biology, 2004; 164(1):35-46.[Crossref]
  • [119] John, L.M., Lechleiter, J.D., and Camacho, P., Differentialmodulation of SERCA2 isoforms by calreticulin, Journal of CellBiology, 1998; 142(4): 963-973.
  • [120] Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks,A.R., and Tabas, I., Role of ERO1-alpha-mediated stimulationof inositol 1,4,5-triphosphate receptor activity in endoplasmicreticulum stress-induced apoptosis, Journal of Cell Biology,2009; 186(6): 783-792.
  • [121] Gilady, S.Y., Bui, M., Lynes, E.M., Benson, M.D., Watts, R.,Vance, J.E., and Simmen, T., Ero1alpha requires oxidizingand normoxic conditions to localize to the mitochondriaassociatedmembrane (MAM), Cell Stress Chaperones, 2010;15(5): 619-629.[Crossref]
  • [122] Hayashi, T., and Su, T.P., Sigma-1 receptor chaperones at theER-mitochondrion interface regulate Ca(2+) signaling and cellsurvival, Cell, 2007; 131(3): 596-610.
  • [123] Hashimoto, K., Sigma-1 receptor chaperone and brain-derivedneurotrophic factor: emerging links between cardiovasculardisease and depression, Progress in neurobiology, 2013; 100:15-29.
  • [124] Wang, L., Eldred, J.A., Sidaway, P., Sanderson, J., Smith, A.J.,Bowater, R.P., Reddan, J.R., and Wormstone, I.M., Sigma1 receptor stimulation protects against oxidative damagethrough suppression of the ER stress responses in thehuman lens, Mechanisms of ageing and development, 2012;133(11-12): 665-674.
  • [125] Mitsuda, T., Omi, T., Tanimukai, H., Sakagami, Y., Tagami,S., Okochi, M., Kudo, T., and Takeda, M., Sigma-1Rs areupregulated via PERK/eIF2alpha/ATF4 pathway and executeprotective function in ER stress, Biochemical and biophysicalresearch communications, 2011; 415(3): 519-525.
  • [126] Hayashi, T., Tsai, S.Y., Mori, T., Fujimoto, M., and Su, T.P.,Targeting ligand-operated chaperone sigma-1 receptors in thetreatment of neuropsychiatric disorders, Expert opinion ontherapeutic targets, 2011; 15(5): 557-577.
  • [127] Nguyen, L., Lucke-Wold, B.P., Mookerjee, S.A., Cavendish,J.Z., Robson, M.J., Scandinaro, A.L., and Matsumoto, R.R.,Role of sigma-1 receptors in neurodegenerative diseases,Journal of pharmacological sciences, 2015; 127(1): 17-29.[Crossref]
  • [128] Hall, A.A., Herrera, Y., Ajmo, C.T., Jr., Cuevas, J., andPennypacker, K.R., Sigma receptors suppress multipleaspects of microglial activation, Glia, 2009; 57(7): 744-754.[Crossref]
  • [129] Marrazzo, A., Caraci, F., Salinaro, E.T., Su, T.P., Copani, A.,and Ronsisvalle, G., Neuroprotective effects of sigma-1receptor agonists against beta-amyloid-induced toxicity,Neuroreport, 2005; 16(11): 1223-1226.[Crossref]
  • [130] Meunier, J., and Hayashi, T., Sigma-1 receptors regulateBcl-2 expression by reactive oxygen species-dependenttranscriptional regulation of nuclear factor kappaB, TheJournal of pharmacology and experimental therapeutics,2010; 332(2): 388-397.
  • [131] Natsvlishvili, N., Goguadze, N., Zhuravliova, E., andMikeladze, D., Sigma-1 receptor directly interacts withRac1-GTPase in the brain mitochondria, BMC biochemistry,2015; 16(1): 11.[Crossref]
  • [132] Hoozemans, J.J., Veerhuis, R., Van Haastert, E.S., Rozemuller,J.M., Baas, F., Eikelenboom, P., and Scheper, W., The unfoldedprotein response is activated in Alzheimer’s disease, Actaneuropathologica, 2005; 110(2): 165-172.[Crossref]
  • [133] Lee, J.H., Won, S.M., Suh, J., Son, S.J., Moon, G.J., Park, U.J.,and Gwag, B.J., Induction of the unfolded protein responseand cell death pathway in Alzheimer’s disease, but not inaged Tg2576 mice, Experimental & molecular medicine, 2010;42(5): 386-394.
  • [134] Hoozemans, J.J., van Haastert, E.S., Nijholt, D.A., Rozemuller,A.J., Eikelenboom, P., and Scheper, W., The unfolded proteinresponse is activated in pretangle neurons in Alzheimer’sdisease hippocampus, The American journal of pathology,2009; 174(4): 1241-1251.[Crossref]
  • [135] Chang, R.C., Wong, A.K., Ng, H.K., and Hugon, J., Phosphorylationof eukaryotic initiation factor-2alpha (eIF2alpha)is associated with neuronal degeneration in Alzheimer’sdisease, Neuroreport, 2002; 13(18): 2429-2432.
  • [136] Mishina, M., Ohyama, M., Ishii, K., Kitamura, S., Kimura, Y.,Oda, K., Kawamura, K., Sasaki, T., Kobayashi, S., Katayama,Y., et al., Low density of sigma1 receptors in early Alzheimer’sdisease, Annals of nuclear medicine, 2008; 22(3): 151-156.
  • [137] Lee do, Y., Lee, K.S., Lee, H.J., Kim do, H., Noh, Y.H., Yu, K.,Jung, H.Y., Lee, S.H., Lee, J.Y., Youn, Y.C., et al., Activation ofPERK signaling attenuates Abeta-mediated ER stress, PLoSOne, 2010; 5(5): e10489.
  • [138] Seyb, K.I., Ansar, S., Bean, J., and Michaelis, M.L.,beta-Amyloid and endoplasmic reticulum stress responsesin primary neurons: effects of drugs that interact with thecytoskeleton, J Mol Neurosci, 2006; 28(2): 111-123.[Crossref]
  • [139] Song, S., Lee, H., Kam, T.I., Tai, M.L., Lee, J.Y., Noh, J.Y.,Shim, S.M., Seo, S.J., Kong, Y.Y., Nakagawa, T., et al., E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Abetaneurotoxicity, J Cell Biol, 2008; 182(4): 675-684.
  • [140] Sato, N., Imaizumi, K., Manabe, T., Taniguchi, M., Hitomi, J.,Katayama, T., Yoneda, T., Morihara, T., Yasuda, Y., Takagi, T.,et al., Increased production of beta-amyloid and vulnerabilityto endoplasmic reticulum stress by an aberrant spliced formof presenilin 2, J Biol Chem, 2001; 276(3): 2108-2114.
  • [141] Katayama, T., Imaizumi, K., Honda, A., Yoneda, T., Kudo, T.,Takeda, M., Mori, K., Rozmahel, R., Fraser, P., George-Hyslop,P.S., et al., Disturbed activation of endoplasmic reticulumstress transducers by familial Alzheimer’s disease-linked presenilin-1 mutations, J Biol Chem, 2001; 276(46): 43446-43454.
  • [142] Milhavet, O., Martindale, J.L., Camandola, S., Chan, S.L.,Gary, D.S., Cheng, A., Holbrook, N.J., and Mattson, M.P.,Involvement of Gadd153 in the pathogenic action ofpresenilin-1 mutations, Journal of neurochemistry, 2002;83(3): 673-681.
  • [143] Bezprozvanny, I., and Mattson, M.P., Neuronal calciummishandling and the pathogenesis of Alzheimer’s disease,Trends in neurosciences, 2008; 31(9): 454-463.
  • [144] Stutzmann, G.E., and Mattson, M.P., Endoplasmic reticulumCa(2+) handling in excitable cells in health and disease,Pharmacological reviews, 2011; 63(3): 700-727.[Crossref]
  • [145] Abisambra, J.F., Jinwal, U.K., Blair, L.J., O’Leary, J.C., 3rd, Li,Q., Brady, S., Wang, L., Guidi, C.E., Zhang, B., Nordhues,B.A., et al., Tau accumulation activates the unfolded proteinresponse by impairing endoplasmic reticulum-associateddegradation, J Neurosci, 2013; 33(22): 9498-9507.[Crossref]
  • [146] Jung, E.S., Hong, H., Kim, C., and Mook-Jung, I., Acute ERstress regulates amyloid precursor protein processingthrough ubiquitin-dependent degradation, Scientific reports,2015; 5: 8805.
  • [147] Mercado, G., Castillo, V., Vidal, R., and Hetz, C., ERproteostasis disturbances in Parkinson’s disease: novelinsights, Frontiers in aging neuroscience, 2015; 7: 39.
  • [148] Hoozemans, J.J., van Haastert, E.S., Eikelenboom, P., deVos, R.A., Rozemuller, J.M., and Scheper, W., Activationof the unfolded protein response in Parkinson’s disease,Biochemical and biophysical research communications,2007; 354(3): 707-711.
  • [149] Smith, W.W., Jiang, H., Pei, Z., Tanaka, Y., Morita, H., Sawa,A., Dawson, V.L., Dawson, T.M., and Ross, C.A., Endoplasmicreticulum stress and mitochondrial cell death pathwaysmediate A53T mutant alpha-synuclein-induced toxicity, HumMol Genet, 2005; 14(24): 3801-3811.[Crossref]
  • [150] Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S.,Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K.,et al., Familial Parkinson disease gene product, parkin, isa ubiquitin-protein ligase, Nature genetics, 2000; 25(3):302-305.
  • [151] Bouman, L., Schlierf, A., Lutz, A.K., Shan, J., Deinlein, A.,Kast, J., Galehdar, Z., Palmisano, V., Patenge, N., Berg, D., etal., Parkin is transcriptionally regulated by ATF4: evidencefor an interconnection between mitochondrial stress and ERstress, Cell Death Differ, 2011; 18(5): 769-782.
  • [152] Sasaki, S., Endoplasmic reticulum stress in motor neuronsof the spinal cord in sporadic amyotrophic lateral sclerosis,Journal of neuropathology and experimental neurology, 2010;69(4): 346-355.
  • [153] Nishitoh, H., Kadowaki, H., Nagai, A., Maruyama, T., Yokota,T., Fukutomi, H., Noguchi, T., Matsuzawa, A., Takeda, K., andIchijo, H., ALS-linked mutant SOD1 induces ER stress- andASK1-dependent motor neuron death by targeting Derlin-1,Genes Dev, 2008; 22(11): 1451-1464.
  • [154] Ying, Z., Wang, H., Fan, H., Zhu, X., Zhou, J., Fei, E., and Wang,G., Gp78, an ER associated E3, promotes SOD1 and ataxin-3degradation, Hum Mol Genet, 2009; 18(22): 4268-4281.
  • [155] Al-Saif, A., Al-Mohanna, F., and Bohlega, S., A mutationin sigma-1 receptor causes juvenile amyotrophic lateralsclerosis, Annals of neurology, 2011; 70(6): 913-919.
  • [156] Bernard-Marissal, N., Medard, J.J., Azzedine, H., and Chrast,R., Dysfunction in endoplasmic reticulum-mitochondriacrosstalk underlies SIGMAR1 loss of function mediated motorneuron degeneration, Brain : a journal of neurology, 2015;138(Pt 4): 875-890.
  • [157] Fukunaga, K., Shinoda, Y., and Tagashira, H., The role ofSIGMAR1 gene mutation and mitochondrial dysfunction inamyotrophic lateral sclerosis, Journal of pharmacologicalsciences, 2015; 127(1): 36-41.
  • [158] Hetz, C., Russelakis-Carneiro, M., Maundrell, K., Castilla, J.,and Soto, C., Caspase-12 and endoplasmic reticulum stressmediate neurotoxicity of pathological prion protein, TheEMBO journal, 2003; 22(20): 5435-5445.[Crossref]
  • [159] Moreno, J.A., Radford, H., Peretti, D., Steinert, J.R., Verity, N.,Martin, M.G., Halliday, M., Morgan, J., Dinsdale, D., Ortori,C.A., et al., Sustained translational repression by eIF2alpha-Pmediates prion neurodegeneration, Nature, 2012; 485(7399):507-511.
  • [160] Das, I., Krzyzosiak, A., Schneider, K., Wrabetz, L., D’Antonio,M., Barry, N., Sigurdardottir, A., and Bertolotti, A.,Preventing proteostasis diseases by selective inhibition of aphosphatase regulatory subunit, Science, 2015; 348(6231):239-242.
  • [161] Tsaytler, P., Harding, H.P., Ron, D., and Bertolotti, A.,Selective inhibition of a regulatory subunit of proteinphosphatase 1 restores proteostasis, Science, 2011;332(6025): 91-94.
  • [162] Halliday, M., Radford, H., Sekine, Y., Moreno, J., Verity, N., leQuesne, J., Ortori, C.A., Barrett, D.A., Fromont, C., Fischer,P.M., et al., Partial restoration of protein synthesis ratesby the small molecule ISRIB prevents neurodegenerationwithout pancreatic toxicity, Cell Death Dis, 2015; 6: e1672.[Crossref]
  • [163] Cho, K.J., Lee, B.I., Cheon, S.Y., Kim, H.W., Kim, H.J., andKim, G.W., Inhibition of apoptosis signal-regulating kinase 1reduces endoplasmic reticulum stress and nuclear huntingtinfragments in a mouse model of Huntington disease,Neuroscience, 2009; 163(4): 1128-1134.[Crossref]
  • [164] Noh, J.Y., Lee, H., Song, S., Kim, N.S., Im, W., Kim, M., Seo,H., Chung, C.W., Chang, J.W., Ferrante, R.J., et al., SCAMP5links endoplasmic reticulum stress to the accumulation ofexpanded polyglutamine protein aggregates via endocytosisinhibition, J Biol Chem, 2009; 284(17): 11318-11325.
  • [165] Vidal, R.L., Figueroa, A., Court, F.A., Thielen, P., Molina, C.,Wirth, C., Caballero, B., Kiffin, R., Segura-Aguilar, J., Cuervo,A.M., et al., Targeting the UPR transcription factor XBP1protects against Huntington’s disease through the regulationof FoxO1 and autophagy, Hum Mol Genet, 2012; 21(10):2245-2262.
  • [166] Atwal, R.S., Xia, J., Pinchev, D., Taylor, J., Epand, R.M., andTruant, R., Huntingtin has a membrane association signalthat can modulate huntingtin aggregation, nuclear entry andtoxicity, Hum Mol Genet, 2007; 16(21): 2600-2615.[Crossref]
  • [167] Eisenberg, D., and Jucker, M., The amyloid state of proteins inhuman diseases, Cell, 2012; 148(6): 1188-1203.[Crossref]
  • [168] Mitra, S., Tsvetkov, A.S., and Finkbeiner, S., Single neuronubiquitin-proteasome dynamics accompanying inclusionbody formation in huntington disease, J Biol Chem, 2009;284(7): 4398-4403.
  • [169] Ortega, Z., Diaz-Hernandez, M., Maynard, C.J., Hernandez,F., Dantuma, N.P., and Lucas, J.J., Acute polyglutamine expression in inducible mouse model unravels ubiquitin/proteasome system impairment and permanent recoveryattributable to aggregate formation, J Neurosci, 2010; 30(10):3675-3688.[Crossref]
  • [170] Bennett, E.J., Bence, N.F., Jayakumar, R., and Kopito, R.R.,Global impairment of the ubiquitin-proteasome system bynuclear or cytoplasmic protein aggregates precedes inclusionbody formation, Mol Cell, 2005; 17(3): 351-365.[Crossref]
  • [171] Landwehrmeyer, G.B., Dubois, B., de Yébenes, J.G., Kremer,B., Gaus, W., Kraus, P.H., Przuntek, H., Dib, M., Doble, A.,Fischer, W., et al., Riluzole in Huntington’s disease: a 3-year,randomized controlled study, Annals of neurology, 2007;62(3): 262-272.[Crossref]
  • [172] Miller, J., Arrasate, M., Brooks, E., Libeu, C.P., Legleiter, J.,Hatters, D., Curtis, J., Cheung, K., Krishnan, P., Mitra, S., etal., Identifying polyglutamine protein species in situ that bestpredict neurodegeneration, Nature chemical biology, 2011;7(12): 925-934.[Crossref]
  • [173] Kouroku, Y., Fujita, E., Jimbo, A., Kikuchi, T., Yamagata,T., Momoi, M.Y., Kominami, E., Kuida, K., Sakamaki, K.,Yonehara, S., et al., Polyglutamine aggregates stimulate ERstress signals and caspase-12 activation, Hum Mol Genet,2002; 11(13): 1505-1515.[Crossref]
  • [174] Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K.,Takeda, K., Inoue, K., Hori, S., Kakizuka, A., and Ichijo, H.,ASK1 is essential for endoplasmic reticulum stress-inducedneuronal cell death triggered by expanded polyglutaminerepeats, Genes Dev, 2002; 16(11): 1345-1355.
  • [175] Ueda, M., Li, S., Itoh, M., Hayakawa-Yano, Y., Wang, M.X.,Hayakawa, M., Hasebe-Matsubara, R., Ohta, K., Ohta, E.,Mizuno, A., et al., Polyglutamine expansion disturbs theendoplasmic reticulum formation, leading to caspase-7activation through Bax, Biochemical and biophysical researchcommunications, 2014; 443(4): 1232-1238.
  • [176] Higo, T., Hamada, K., Hisatsune, C., Nukina, N., Hashikawa,T., Hattori, M., Nakamura, T., and Mikoshiba, K., Mechanismof ER stress-induced brain damage by IP(3) receptor, Neuron,2010; 68(5): 865-878.[Crossref]
  • [177] Tang, T.S., Tu, H., Chan, E.Y., Maximov, A., Wang, Z.,Wellington, C.L., Hayden, M.R., and Bezprozvanny, I.,Huntingtin and huntingtin-associated protein 1 influenceneuronal calcium signaling mediated by inositol-(1,4,5)triphosphate receptor type 1, Neuron, 2003; 39(2): 227-239.
  • [178] Zhang, H., Li, Q., Graham, R.K., Slow, E., Hayden, M.R., andBezprozvanny, I., Full length mutant huntingtin is required foraltered Ca2+ signaling and apoptosis of striatal neurons inthe YAC mouse model of Huntington’s disease, Neurobiologyof disease, 2008; 31(1): 80-88.
  • [179] Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto,A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka,Y., et al., Autophagosomes form at ER-mitochondria contactsites, Nature, 2013; 495(7441): 389-393.
  • [180] Miki, Y., Tanji, K., Mori, F., and Wakabayashi, K., Sigma-1receptor is involved in degradation of intranuclear inclusionsin a cellular model of Huntington’s disease, Neurobiology ofdisease, 2015; 74: 25-31.
  • [181] Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K.,Colina, R., Cuello, C., Sossin, W., Kaufman, R., Pelletier, J.,Rosenblum, K., et al., eIF2alpha phosphorylation bidirectionallyregulates the switch from short- to long-term synapticplasticity and memory, Cell, 2007; 129(1): 195-206.
  • [182] Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., Vedantham,P., Hearn, B.R., Li, H., Gamache, K., Gallagher, C.M., Ang,K.K., Wilson, C., et al., Pharmacological brake-release ofmRNA translation enhances cognitive memory, Elife, 2013; 2:e00498.
  • [183] Godinho, B.M.D.C., Malhotra, M., O’Driscoll, C.M., and Cryan,J.F., Delivering a disease-modifying treatment for Huntington’sdisease, Drug Discovery Today, 2015; 20(1): 50-64.[Crossref]
  • [184] Aharony, I., Ehrnhoefer, D.E., Shruster, A., Qiu, X., Franciosi,S., Hayden, M.R., and Offen, D., A Huntingtin-based peptideinhibitor of caspase-6 provides protection from mutantHuntingtin-induced motor and behavioral deficits, Hum MolGenet, 2015; 24(9): 2604-2614.[Crossref]
  • [185] Ferrante, R.J., Kubilus, J.K., Lee, J., Ryu, H., Beesen, A.,Zucker, B., Smith, K., Kowall, N.W., Ratan, R.R., Luthi-Carter,R., et al., Histone deacetylase inhibition by sodium butyratechemotherapy ameliorates the neurodegenerative phenotypein Huntington’s disease mice, J Neurosci, 2003; 23(28):9418-9427.
  • [186] Keene, C.D., Rodrigues, C.M., Eich, T., Chhabra, M.S., Steer,C.J., and Low, W.C., Tauroursodeoxycholic acid, a bile acid, isneuroprotective in a transgenic animal model of Huntington’sdisease, Proc Natl Acad Sci U S A, 2002; 99(16): 10671-10676.[Crossref]
  • [187] Wei, H., Kim, S.J., Zhang, Z., Tsai, P.C., Wisniewski, K.E.,and Mukherjee, A.B., ER and oxidative stresses are commonmediators of apoptosis in both neurodegenerative andnon-neurodegenerative lysosomal storage disorders and arealleviated by chemical chaperones, Hum Mol Genet, 2008;17(4): 469-477.[Crossref]
  • [188] Maurice, T., Urani, A., Phan, V.L., and Romieu, P., Theinteraction between neuroactive steroids and the sigma1receptor function: behavioral consequences and therapeuticopportunities, Brain research. Brain research reviews, 2001;37(1-3): 116-132.
  • [189] Ruscher, K., Shamloo, M., Rickhag, M., Ladunga, I., Soriano,L., Gisselsson, L., Toresson, H., Ruslim-Litrus, L., Oksenberg,D., Urfer, R., et al., The sigma-1 receptor enhances brainplasticity and functional recovery after experimental stroke,Brain : a journal of neurology, 2011; 134(Pt 3): 732-746.
  • [190] Urfer, R., Moebius, H.J., Skoloudik, D., Santamarina, E.,Sato, W., Mita, S., and Muir, K.W., Phase II trial of theSigma-1 receptor agonist cutamesine (SA4503) for recoveryenhancement after acute ischemic stroke, Stroke; a journal ofcerebral circulation, 2014; 45(11): 3304-3310.
  • [191] Francardo, V., Bez, F., Wieloch, T., Nissbrandt, H., Ruscher,K., and Cenci, M.A., Pharmacological stimulation of sigma-1receptors has neurorestorative effects in experimentalparkinsonism, Brain : a journal of neurology, 2014; 137(Pt 7):1998-2014.
  • [192] Hyrskyluoto, A., Pulli, I., Tornqvist, K., Ho, T.H., Korhonen,L., and Lindholm, D., Sigma-1 receptor agonist PRE084is protective against mutant huntingtin-induced celldegeneration: involvement of calpastatin and the NF-kappaBpathway, Cell Death Dis, 2013; 4: e646.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_ersc-2015-0007
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.