Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 1 |

Article title

The unfolded protein response, inflammation,
oscillators, and disease: a systems biology
approach

Content

Title variants

Languages of publication

EN

Abstracts

EN
Non-communicable diseases (NCDs) such as
cardiovascular disease, cancers, diabetes and obesity are
responsible for about two thirds of mortality worldwide,
and all of these ailments share a common low-intensity
systemic chronic inflammation, endoplasmic reticulum
stress (ER stress), and the ensuing Unfolded Protein
Response (UPR). These adaptive mechanisms are also
responsible for significant metabolic changes that feedback
with the central clock of the suprachiasmatic nucleus
(SCN) of the hypothalamus, as well as with oscillators
of peripheral tissues. In this review we attempt to use a
systems biology approach to explore such interactions as
a whole; to answer two fundamental questions: (1) how
dependent are these adaptive responses and subsequent
events leading to NCD with their state of synchrony with
the SCN and peripheral oscillators? And, (2) How could
modifiers of the activity of SCN for instance, food intake,
exercise, and drugs, be potentially used to modulate
systemic inflammation and ER stress to ameliorate or even
prevent NCDs?

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

accepted
2 - 1 - 2015
received
21 - 10 - 2014
online
26 - 2 - 2015

Contributors

  • Department of
    Technology of Biological Processes and Group of Digital Science,
    Simon Bolivar University, Caracas, 1083, Venezuela

References

  • [1] Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, AboyansV, et al. Global and regional mortality from 235 causes ofdeath for 20 age groups in 1990 and 2010: a systematicanalysis for the Global Burden of Disease Study 2010. Lancet.2012;380(9859):2095-128.
  • [2] Ezzati M, Riboli E. Can noncommunicable diseases beprevented? Lessons from studies of populations andindividuals. Science. 2012;337(6101):1482-7.
  • [3] Khandekar MJ, Cohen P, Spiegelman BM. Molecularmechanisms of cancer development in obesity. Nature reviewsCancer. 2011;11(12):886-95.[Crossref]
  • [4] Zhou X, Menche J, Barabasi AL, Sharma A. Human symptomsdiseasenetwork. Nature communications. 2014;5:4212.
  • [5] Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL.The human disease network. Proceedings of the NationalAcademy of Sciences of the United States of America.2007;104(21):8685-90.
  • [6] Hotamisligil GS. Endoplasmic reticulum stress andthe inflammatory basis of metabolic disease. Cell.2010;140(6):900-17.[Crossref]
  • [7] Kolattukudy PE, Niu J. Inflammation, endoplasmicreticulum stress, autophagy, and the monocyte chemoattractantprotein-1/CCR2 pathway. Circulation research.2012;110(1):174-89.[Crossref]
  • [8] Hotamisligil GS. Inflammation and metabolic disorders. Nature.2006;444(7121):860-7.
  • [9] Eckel-Mahan K, Sassone-Corsi P. Metabolism and the CircadianClock Converge. Physiological reviews. 2013;93(1):107-35.[Crossref]
  • [10] Shi M, Zheng X. Interactions between the circadian clockand metabolism: there are good times and bad times. Actabiochimica et biophysica Sinica. 2013;45(1):61-9.
  • [11] Goldbeter A, Gerard C, Gonze D, Leloup JC, Dupont G. Systemsbiology of cellular rhythms. FEBS Lett. 2012;586(18):2955-65.
  • [12] Mattu HS, Randeva HS. Role of adipokines in cardiovasculardisease. The Journal of endocrinology. 2013;216(1):T17-36.
  • [13] Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes inhealth and disease. Nature. 2012;481(7381):278-86.
  • [14] Brennan MD, Cheong R, Levchenko A. Systems biology. Howinformation theory handles cell signaling and uncertainty.Science. 2012;338(6105):334-5.
  • [15] Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A.Information transduction capacity of noisy biochemicalsignaling networks. Science. 2011;334(6054):354-8.
  • [16] Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S,Uronis JM, Fan TJ, et al. Intestinal inflammation targetscancer-inducing activity of the microbiota. Science.2012;338(6103):120-3.
  • [17] Walter P, Ron D. The unfolded protein response: fromstress pathway to homeostatic regulation. Science.2011;334(6059):1081-6.
  • [18] Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolicsyndrome: from experimental genetics to human disease.Circulation research. 2010;106(3):447-62.[Crossref]
  • [19] Khera A, de Lemos JA, Peshock RM, Lo HS, Stanek HG, MurphySA, et al. Relationship between C-reactive protein andsubclinical atherosclerosis: the Dallas Heart Study. Circulation.2006;113(1):38-43.
  • [20] Packard RR, Libby P. Inflammation in atherosclerosis: fromvascular biology to biomarker discovery and risk prediction.Clinical chemistry. 2008;54(1):24-38.
  • [21] Hauner H, Bechthold A, Boeing H, Bronstrup A, Buyken A,Leschik-Bonnet E, et al. Evidence-based guideline of theGerman Nutrition Society: carbohydrate intake and preventionof nutrition-related diseases. Annals of nutrition & metabolism.2012;60 Suppl 1:1-58.
  • [22] WHO Report.pdf.
  • [23] Mohawk JA, Green CB, Takahashi JS. Central and peripheralcircadian clocks in mammals. Annual review of neuroscience.2012;35:445-62.
  • [24] Kwon I, Choe HK, Son GH, Kim K. Mammalian molecular clocks.Experimental neurobiology. 2011;20(1):18-28.[Crossref]
  • [25] Golombek DA, Rosenstein RE. Physiology of circadianentrainment. Physiological reviews. 2010;90(3):1063-102.[Crossref]
  • [26] Medzhitov R. Origin and physiological roles of inflammation.Nature. 2008;454(7203):428-35.
  • [27] Hotamisligil GS, Shargill NS, Spiegelman BM. Adiposeexpression of tumor necrosis factor-alpha: directrole in obesity-linked insulin resistance. Science.1993;259(5091):87-91.
  • [28] Gregor MF, Hotamisligil GS. Inflammatory mechanisms inobesity. Annual review of immunology. 2011;29:415-45.
  • [29] Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, etal. MCP-1 contributes to macrophage infiltration into adiposetissue, insulin resistance, and hepatic steatosis in obesity. TheJournal of clinical investigation. 2006;116(6):1494-505.
  • [30] Hume DA. The mononuclear phagocyte system. Current opinionin immunology. 2006;18(1):49-53.
  • [31] Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines:molecular links between obesity and atheroslcerosis. Americanjournal of physiology Heart and circulatory physiology.2005;288(5):H2031-41.
  • [32] Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis,myocardial infarction, and heart failure. Science.2013;339(6116):161-6.
  • [33] Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes.Nat Rev Immunol. 2013;13(6):397-411.[Crossref]
  • [34] Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis:mechanistic description of dead and dying eukaryotic cells.Infection and immunity. 2005;73(4):1907-16.
  • [35] Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactiveprotein in healthy subjects: associations with obesity, insulinresistance, and endothelial dysfunction: a potential role forcytokines originating from adipose tissue? Arteriosclerosis,thrombosis, and vascular biology. 1999;19(4):972-8.
  • [36] Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein,the metabolic syndrome, and risk of incident cardiovascularevents: an 8-year follow-up of 14 719 initially healthy Americanwomen. Circulation. 2003;107(3):391-7.
  • [37] C-Reactive Protein, Fibrinogen, and CardiovascularDisease Prediction. New England Journal of Medicine.2012;367(14):1310-20.
  • [38] Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-relatedinflammation. Nature. 2008;454(7203):436-44.
  • [39] Karin M, Lawrence T, Nizet V. Innate immunity gone awry:linking microbial infections to chronic inflammation andcancer. Cell. 2006;124(4):823-35.[Crossref]
  • [40] Atsumi T, Singh R, Sabharwal L, Bando H, Meng J, Arima Y, et al.Molecular Pathogenesis of Colorectal Cancer
  • [Inflammation Amplifier, a New Paradigm in Cancer Biology.Anticancer Res. 2014;34(2):1065-b-.
  • [41] Grivennikov SI, Greten FR, Karin M. Immunity, inflammation,and cancer. Cell. 2010;140(6):883-99.[Crossref]
  • [42] Dunn GP, Old LJ, Schreiber RD. The immunobiology ofcancer immunosurveillance and immunoediting. Immunity.2004;21(2):137-48.[Crossref]
  • [43] Bultman SJ. Emerging roles of the microbiome in cancer.Carcinogenesis. 2014;35(2):249-55.[Crossref]
  • [44] Gallimore AM, Phil, D., Godkin, A. Epithelial Barriers,Microbiota, and Colorectal Cancer. New England Journal ofMedicine. 2013.
  • [45] Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al.Gut Microbiota from Twins Discordant for Obesity ModulateMetabolism in Mice. Science. 2013;341(6150):1241214-.
  • [46] Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, OyadomariS, et al. Obesity-induced gut microbial metabolite promotesliver cancer through senescence secretome. Nature.2013;499(7456):97-101.
  • [47] Winter SE, Lopez CA, Baumler AJ. The dynamics ofgut-associated microbial communities during inflammation.EMBO reports. 2013;14(4):319-27.[Crossref]
  • [48] Human Microbiome Project C. Structure, function anddiversity of the healthy human microbiome. Nature.2012;486(7402):207-14.
  • [49] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,Wolfe BE, et al. Diet rapidly and reproducibly alters the humangut microbiome. Nature. 2014;505(7484):559-63.
  • [50] Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-BelloMG, Contreras M, et al. Human gut microbiome viewed acrossage and geography. Nature. 2012;486(7402):222-7.
  • [51] O’Toole PW, Claesson MJ. Gut microbiota: Changes throughoutthe lifespan from infancy to elderly. International Dairy Journal.2010;20(4):281-91.[Crossref]
  • [52] Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasiveeffects of an antibiotic on the human gut microbiota, asrevealed by deep 16S rRNA sequencing. PLoS biology.2008;6(11):e280.[Crossref]
  • [53] Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ,Remely M, et al. Changes in Human Fecal Microbiota Due toChemotherapy Analyzed by TaqMan-PCR, 454 Sequencing andPCR-DGGE Fingerprinting. PloS one. 2011;6(12):e28654.
  • [54] Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R,Hannani D, et al. The intestinal microbiota modulates theanticancer immune effects of cyclophosphamide. Science.2013;342(6161):971-6.
  • [55] Nicholson JK, Holmes E, Lindon JC, Wilson ID. The challengesof modeling mammalian biocomplexity. Nature biotechnology.2004;22(10):1268-74.[Crossref]
  • [56] Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of thegut microbiota on human health: an integrative view. Cell.2012;148(6):1258-70.
  • [57] Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD,Gordon JI. Obesity alters gut microbial ecology. Proceedingsof the National Academy of Sciences of the United States ofAmerica. 2005;102(31):11070-5.
  • [58] Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wideassociation study of gut microbiota in type 2 diabetes. Nature.2012;490(7418):55-60.
  • [59] Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J,deRoos P, et al. Metabolites produced by commensal bacteriapromote peripheral regulatory T-cell generation. Nature.2013;504(7480):451-5.
  • [60] Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, FalonyG, et al. Richness of human gut microbiome correlates withmetabolic markers. Nature. 2013;500(7464):541-6.
  • [61] Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, BouillotJL, et al. Differential adaptation of human gut microbiotato bariatric surgery-induced weight loss: links withmetabolic and low-grade inflammation markers. Diabetes.2010;59(12):3049-57.[Crossref]
  • [62] Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, TakahashiD, et al. Commensal microbe-derived butyrate inducesthe differentiation of colonic regulatory T cells. Nature.2013;504(7480):446-50.
  • [63] Nemazee D. Receptor editing in lymphocyte development andcentral tolerance. Nat Rev Immunol. 2006;6(10):728-40.[Crossref]
  • [64] Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP,Cluff-Jones K, Magee JM, et al. Microbial colonizationinfluences early B-lineage development in the gut laminapropria. Nature. 2013;501(7465):112-5.
  • [65] Kostic AD, Chun E, Meyerson M, Garrett WS. Microbes andinflammation in colorectal cancer. Cancer immunologyresearch. 2013;1(3):150-7.
  • [66] Marshall BJ, Warren JR. Unidentified curved bacilli in thestomach of patients with gastritis and peptic ulceration.Lancet. 1984;1(8390):1311-5.
  • [67] De Vries AC, Van Driel HF, Richardus JH, Ouwendijk M, VanVuuren AJ, De Man RA, et al. Migrant communities constitutea possible target population for primary prevention ofHelicobacter pylori-related complications in low incidencecountries. Scandinavian journal of gastroenterology.2008;43(4):403-9.
  • [68] Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B,Jauch D, et al. Adenoma-linked barrier defects and microbialproducts drive IL-23/IL-17-mediated tumour growth. Nature.2012;491(7423):254-8.
  • [69] Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A,Ploegh HL. Helicobacter pylori cytotoxin-associated geneA (CagA) subverts the apoptosis-stimulating protein of p53(ASPP2) tumor suppressor pathway of the host. Proceedingsof the National Academy of Sciences of the United States ofAmerica. 2011;108(22):9238-43.
  • [70] Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformationsby human intestinal bacteria. Journal of lipid research.2006;47(2):241-59.
  • [71] Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, MendeDR, et al. Enterotypes of the human gut microbiome. Nature.2011;473(7346):174-80.
  • [72] Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C,et al. A human gut microbial gene catalogue established bymetagenomic sequencing. Nature. 2010;464(7285):59-65.
  • [73] Zhang K. Integration of ER stress, oxidative stress and theinflammatory response in health and disease. Internationaljournal of clinical and experimental medicine. 2010;3(1):33-40.
  • [74] Kaufman RJ. Stress signaling from the lumen of theendoplasmic reticulum: coordination of gene transcriptionaland translational controls. Genes & development.1999;13(10):1211-33.
  • [75] Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT,et al. Endoplasmic reticulum stress activates cleavage ofCREBH to induce a systemic inflammatory response. Cell.2006;124(3):587-99.[Crossref]
  • [76] Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, etal. The endoplasmic reticulum is the site of cholesterol induced cytotoxicity in macrophages. Nature cell biology.2003;5(9):781-92.
  • [77] Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturatedfatty acids induce endoplasmic reticulum stress andapoptosis independently of ceramide in liver cells. Americanjournal of physiology Endocrinology and metabolism.2006;291(2):E275-81.
  • [78] Scheuner D, Vander Mierde D, Song B, Flamez D, CreemersJW, Tsukamoto K, et al. Control of mRNA translation preservesendoplasmic reticulum function in beta cells and maintainsglucose homeostasis. Nature medicine. 2005;11(7):757-64.[Crossref]
  • [79] Rath E, Haller D. Inflammation and cellular stress: amechanistic link between immune-mediated and metabolicallydriven pathologies. European journal of nutrition.2011;50(4):219-33.
  • [80] Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, et al.Activation of AMP-activated protein kinase inhibits oxidizedLDL-triggered endoplasmic reticulum stress in vivo. Diabetes.2010;59(6):1386-96.[Crossref]
  • [81] Khan MI, Pichna BA, Shi Y, Bowes AJ, Werstuck GH. Evidencesupporting a role for endoplasmic reticulum stress in thedevelopment of atherosclerosis in a hyperglycaemic mousemodel. Antioxidants & redox signaling. 2009;11(9):2289-98.
  • [82] Zhou J, Austin RC. Contributions of hyperhomocysteinemiato atherosclerosis: Causal relationship and potentialmechanisms. BioFactors (Oxford, England). 2009;35(2):120-9.[Crossref]
  • [83] Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK,Dickhout JG, et al. TDAG51 is induced by homocysteine,promotes detachment-mediated programmed cell death,and contributes to the cevelopment of atherosclerosis inhyperhomocysteinemia. The Journal of biological chemistry.2003;278(32):30317-27.
  • [84] Tabas I. The role of endoplasmic reticulum stress in theprogression of atherosclerosis. Circulation research.2010;107(7):839-50.[Crossref]
  • [85] Tabas I. Macrophage death and defective inflammationresolution in atherosclerosis. Nat Rev Immunol.2010;10(1):36-46.
  • [86] Hotamisligil GS. Endoplasmic reticulum stress and atherosclerosis.Nature medicine. 2010;16(4):396-9.[Crossref]
  • [87] Lee AH, Glimcher LH. Intersection of the unfolded proteinresponse and hepatic lipid metabolism. Cellular and molecularlife sciences : CMLS. 2009;66(17):2835-50.
  • [88] Spiotto MT, Banh A, Papandreou I, Cao H, Galvez MG, GurtnerGC, et al. Imaging the unfolded protein response in primarytumors reveals microenvironments with metabolic variationsthat predict tumor growth. Cancer research. 2010;70(1):78-88.[Crossref]
  • [89] Mahadevan NR, Zanetti M. Tumor stress inside out:cell-extrinsic effects of the unfolded protein response in tumorcells modulate the immunological landscape of the tumormicroenvironment. Journal of immunology (Baltimore, Md :1950). 2011;187(9):4403-9.
  • [90] VANDEWYNCKEL Y-P, LAUKENS D, GEERTS A, BOGAERTSE, PARIDAENS A, VERHELST X, et al. The Paradox of theUnfolded Protein Response in Cancer. Anticancer Res.2013;33(11):4683-94.
  • [91] Rutkowski DT, Hegde RS. Regulation of basal cellularphysiology by the homeostatic unfolded protein response. TheJournal of cell biology. 2010;189(5):783-94.
  • [92] Hetz C. The unfolded protein response: controlling cellfate decisions under ER stress and beyond. Nature reviewsMolecular cell biology. 2012;13(2):89-102.
  • [93] Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO,Herscovics A, et al. A novel ER alpha-mannosidase-like proteinaccelerates ER-associated degradation. EMBO reports.2001;2(5):415-22.[Crossref]
  • [94] Oyadomari S, Mori M. Roles of CHOP/GADD153 inendoplasmic reticulum stress. Cell death and differentiation.2004;11(4):381-9.
  • [95] Tsaytler P, Harding HP, Ron D, Bertolotti A. Selective inhibitionof a regulatory subunit of protein phosphatase 1 restoresproteostasis. Science. 2011;332(6025):91-4.
  • [96] Harding HP, Zhang Y, Scheuner D, Chen JJ, Kaufman RJ, RonD. Ppp1r15 gene knockout reveals an essential role fortranslation initiation factor 2 alpha (eIF2alpha) dephosphorylationin mammalian development. Proceedings of theNational Academy of Sciences of the United States of America.2009;106(6):1832-7.
  • [97] Chawla A, Chakrabarti S, Ghosh G, Niwa M. Attenuation ofyeast UPR is essential for survival and is mediated by IRE1kinase. The Journal of cell biology. 2011;193(1):41-50.
  • [98] Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J,Zhang C, Shokat KM, et al. The unfolded protein responsesignals through high-order assembly of Ire1. Nature.2009;457(7230):687-93.
  • [99] Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P,Szomolanyi-Tsuda E, Gravallese EM, et al. Plasma celldifferentiation requires the transcription factor XBP-1. Nature.2001;412(6844):300-7.
  • [100] Prischi F, Nowak PR, Carrara M, Ali MMU. Phosphoregulationof Ire1 RNase splicing activity. Nature communications.2014;5.
  • [101] Schindler AJ, Schekman R. In vitro reconstitution of ER-stressinduced ATF6 transport in COPII vesicles. Proceedings ofthe National Academy of Sciences of the United States ofAmerica. 2009;106(42):17775-80.
  • [102] Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammaliantranscription factor ATF6 is synthesized as a transmembraneprotein and activated by proteolysis in response toendoplasmic reticulum stress. Molecular biology of the cell.1999;10(11):3787-99.
  • [103] Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS. The glucoseregulatedproteins (GRP78 and GRP94): functions, generegulation, and applications. Critical reviews in eukaryoticgene expression. 1994;4(1):1-18.
  • [104] Sela D, Chen L, Martin-Brown S, Washburn MP, Florens L,Conaway JW, et al. Endoplasmic Reticulum Stress-responsiveTranscription Factor ATF6{alpha} Directs Recruitmentof the Mediator of RNA Polymerase II Transcription andMultiple Histone Acetyltransferase Complexes. J Biol Chem.2012;287(27):23035-45.
  • [105] Schram AW, Baas R, Jansen PW, Riss A, Tora L, VermeulenM, et al. A dual role for SAGA-associated factor 29 (SGF29)in ER stress survival by coordination of both histone H3acetylation and histone H3 lysine-4 trimethylation. PloS one.2013;8(7):e70035.
  • [106] Nagy Z, Riss A, Fujiyama S, Krebs A, Orpinell M, Jansen P, etal. The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cellular andmolecular life sciences : CMLS. 2010;67(4):611-28.
  • [107] Hiramatsu N, Messah C, Han J, LaVail MM, Kaufman RJ, LinJH. Translational and posttranslational regulation of XIAPby eIF2{alpha} and ATF4 promotes ER stress-induced celldeath during the unfolded protein response. Mol Biol Cell.2014;25(9):1411-20.[Crossref]
  • [108] Danial NN, Korsmeyer SJ. Cell death: critical control points.Cell. 2004;116(2):205-19.[Crossref]
  • [109] Salvesen GS, Ashkenazi A. Snapshot: caspases. Cell.2011;147(2):476-.e1.[Crossref]
  • [110] Li Y, Guo Y, Tang J, Jiang J, Chen Z. New insights into theroles of CHOP-induced apoptosis in ER stress. Acta BiochimBiophys Sin. 2014;46(8):629-40.[Crossref]
  • [111] Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, et al.ER-stress-induced transcriptional regulation increasesprotein synthesis leading to cell death. Nature cell biology.2013;15(5):481-90.
  • [112] Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, etal. IRE1alpha cleaves select microRNAs during ER stress toderepress translation of proapoptotic Caspase-2. Science.2012;338(6108):818-22.
  • [113] Sandow JJ, Dorstyn L, O’Reilly LA, Tailler M, Kumar S, StrasserA, et al. ER stress does not cause upregulation and activationof caspase-2 to initiate apoptosis. Cell death and differentiation.2014;21(3):475-80.
  • [114] Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, KimmigP, Mendez AS, et al. Opposing unfolded-protein-responsesignals converge on death receptor 5 to control apoptosis.Science. 2014;345(6192):98-101.
  • [115] Yamauchi Y, Riel JM, Stoytcheva Z, Ward MA. Two Y genes canreplace the entire Y chromosome for assisted reproduction inthe mouse. Science. 2014;343(6166):69-72.
  • [116] Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T,Wang J, et al. ATF6alpha optimizes long-term endoplasmicreticulum function to protect cells from chronic stress.Developmental cell. 2007;13(3):351-64.
  • [117] Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulumstress: disease relevance and therapeutic opportunities.Nature reviews Drug discovery. 2008;7(12):1013-30.[Crossref]
  • [118] Morishima N, Nakanishi K, Nakano A. Activating transcriptionfactor-6 (ATF6) mediates apoptosis with reduction of myeloidcell leukemia sequence 1 (Mcl-1) protein via induction of WWdomain binding protein 1. The Journal of biological chemistry.2011;286(40):35227-35.
  • [119] Ko CH, Takahashi JS. Molecular components of themammalian circadian clock. Human molecular genetics.2006;15(suppl 2):R271-R7.
  • [120] Pluquet O, Dejeans N, Chevet E. Watching the clock:endoplasmic reticulum-mediated control of circadian rhythmsin cancer. Ann Med. 2014;46(4):233-43.[Crossref]
  • [121] Yang X. A wheel of time: the circadian clock, nuclearreceptors, and physiology. Genes & development.2010;24(8):741-7.
  • [122] Gritton HJ, Stasiak AM, Sarter M, Lee TM. Cognitiveperformance as a zeitgeber: cognitive oscillators andcholinergic modulation of the SCN entrain circadian rhythms.PloS one. 2013;8(2):e56206.
  • [123] Bass J. Circadian topology of metabolism. Nature.2012;491(7424):348-56.
  • [124] Menet JS, Pescatore S, Rosbash M. CLOCK:BMAL1 is apioneer-like transcription factor. Genes & development.2014;28(1):8-13.
  • [125] Zhao X, Cho H, Yu RT, Atkins AR, Downes M, Evans RM.Nuclear receptors rock around the clock. EMBO reports.2014;15(5):518-28.[Crossref]
  • [126] Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivatorPGC-1alpha integrates the mammalian clock and energymetabolism. Nature. 2007;447(7143):477-81.
  • [127] Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptorRev-erbalpha is a critical lithium-sensitive component of thecircadian clock. Science. 2006;311(5763):1002-5.
  • [128] Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, etal. Regulation of circadian behaviour and metabolismby REV-ERB-alpha and REV-ERB-beta. Nature.2012;485(7396):123-7.
  • [129] Stubblefield JJ, Terrien J, Green CB. Nocturnin: atthe crossroads of clocks and metabolism. Trends inEndocrinology & Metabolism. 2012;23(7):326-33.
  • [130] Kawai M, Green CB, Lecka-Czernik B, Douris N, Gilbert MR,Kojima S, et al. A circadian-regulated gene, Nocturnin,promotes adipogenesis by stimulating PPAR-γ nucleartranslocation. Proceedings of the National Academy ofSciences. 2010;107(23):10508-13.
  • [131] Misra J, Kim D-K, Choi W, Koo S-H, Lee C-H, Back S-H, et al.Transcriptional cross talk between orphan nuclear receptorERRγ and transmembrane transcription factor ATF6αcoordinates endoplasmic reticulum stress response. Nucleicacids research. 2013;41(14):6960-74.
  • [132] Kim DK, Ryu D, Koh M, Lee MW, Lim D, Kim MJ, et al.Orphan nuclear receptor estrogen-related receptor gamma(ERRgamma) is key regulator of hepatic gluconeogenesis. TheJournal of biological chemistry. 2012;287(26):21628-39.
  • [133] Koyanagi S, Hamdan AM, Horiguchi M, Kusunose N,Okamoto A, Matsunaga N, et al. cAMP-response element(CRE)-mediated transcription by activating transcriptionfactor-4 (ATF4) is essential for circadian expression ofthe Period2 gene. The Journal of biological chemistry.2011;286(37):32416-23.
  • [134] Cretenet G, Le Clech M, Gachon F. Circadian clock-coordinated12 Hr period rhythmic activation of the IRE1alpha pathwaycontrols lipid metabolism in mouse liver. Cell metabolism.2010;11(1):47-57.[Crossref]
  • [135] Chang HC, Guarente L. SIRT1 mediates central circadiancontrol in the SCN by a mechanism that decays with aging.Cell. 2013;153(7):1448-60.
  • [136] McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA. SIRT1is a Highly Networked Protein That Mediates the Adaptationto Chronic Physiological Stress. Genes & cancer. 2013;4(3-4):125-34.
  • [137] Li X. SIRT1 and energy metabolism. Acta biochimica etbiophysica Sinica. 2013;45(1):51-60.
  • [138] Wang FM, Chen YJ, Ouyang HJ. Regulation of unfolded proteinresponse modulator XBP1s by acetylation and deacetylation.The Biochemical journal. 2011;433(1):245-52.
  • [139] Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, et al. Hepaticoverexpression of SIRT1 in mice attenuates endoplasmicreticulum stress and insulin resistance in the liver. FASEBjournal : official publication of the Federation of AmericanSocieties for Experimental Biology. 2011;25(5):1664-79. [Crossref]
  • [140] Gachon F, Bonnefont X. Circadian clock-coordinated hepaticlipid metabolism: only transcriptional regulation? Aging(Albany NY). 2010;2(2):101-6.[Crossref]
  • [141] Hoffmann A, Levchenko A, Scott ML, Baltimore D. TheIkappaB-NF-kappaB signaling module: temporal control andselective gene activation. Science. 2002;298(5596):1241-5.
  • [142] Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA,Foreman BE, et al. Oscillations in NF-kappaB signalingcontrol the dynamics of gene expression. Science.2004;306(5696):704-8.
  • [143] Lee JH, Sancar A. Regulation of apoptosis by the circadianclock through NF-kappaB signaling. Proceedings of theNational Academy of Sciences of the United States ofAmerica. 2011;108(29):12036-41.
  • [144] Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses.Annual review of immunology. 1998;16:225-60.
  • [145] Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaBsignaling. Immunological reviews. 2006;210:171-86.[Crossref]
  • [146] Israel A. The IKK complex, a central regulator of NF-kappaBactivation. Cold Spring Harbor perspectives in biology.2010;2(3):a000158.
  • [147] Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, OkamuraM, Ogata R, et al. Activation of the Akt-NF-kappaB pathway bysubtilase cytotoxin through the ATF6 branch of the unfoldedprotein response. Journal of immunology (Baltimore, Md :1950). 2009;183(2):1480-7.
  • [148] Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrinetumor necrosis factor alpha links endoplasmic reticulumstress to the membrane death receptor pathwaythrough IRE1alpha-mediated NF-kappaB activation anddown-regulation of TRAF2 expression. Molecular and cellularbiology. 2006;26(8):3071-84.
  • [149] Mei Y, Thompson MD, Cohen RA, Tong X. EndoplasmicReticulum Stress and Related Pathological Processes.Journal of pharmacological & biomedical analysis.2013;1(2):1000107.
  • [150] Wang Y, Paszek P, Horton CA, Yue H, White MRH, Kell DB, et al.A systematic survey of the response of a model NF- signallingpathway to stimulation. Journal of Theoretical Biology.2012;297(0):137-47.
  • [151] Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, CovertMW. Single-cell NF-kappaB dynamics reveal digitalactivation and analogue information processing. Nature.2010;466(7303):267-71.
  • [152] Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, SillitoeK, et al. Pulsatile stimulation determines timing andspecificity of NF-kappaB-dependent transcription. Science.2009;324(5924):242-6.
  • [153] Spengler ML, Kuropatwinski KK, Comas M, GasparianAV, Fedtsova N, Gleiberman AS, et al. Core circadianprotein CLOCK is a positive regulator of NF-kappaBmediatedtranscription. Proceedings of the NationalAcademy of Sciences of the United States of America.2012;109(37):E2457-65.
  • [154] Bellet MM, Zocchi L, Sassone-Corsi P. The RelB subunit ofNFkappaB acts as a negative regulator of circadian geneexpression. Cell cycle (Georgetown, Tex). 2012;11(17):3304-11.
  • [155] Palomer X, Alvarez-Guardia D, Rodriguez-Calvo R, Coll T,Laguna JC, Davidson MM, et al. TNF-alpha reduces PGC-1alphaexpression through NF-kappaB and p38 MAPK leading toincreased glucose oxidation in a human cardiac cell model.Cardiovascular research. 2009;81(4):703-12.[Crossref]
  • [156] Cooks T, Harris CC, Oren M. Caught in the cross fire: p53 ininflammation. Carcinogenesis. 2014;35(8):1680-90.[Crossref]
  • [157] Dioufa N, Chatzistamou I, Farmaki E, Papavassiliou AG,Kiaris H. p53 antagonizes the unfolded protein responseand inhibits ground glass hepatocyte development duringendoplasmic reticulum stress. Experimental biology andmedicine (Maywood, NJ). 2012;237(10):1173-80.
  • [158] Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A,Dekel E, et al. Oscillations and variability in the p53 system.Molecular systems biology. 2006;2:2006 0033.
  • [159] Purvis JE, Karhohs KW, Mock C, Batchelor E, LoewerA, Lahav G. p53 dynamics control cell fate. Science.2012;336(6087):1440-4.
  • [160] Miki T, Matsumoto T, Zhao Z, Lee CC. p53 regulates Period2expression and the circadian clock. Nature communications.2013;4:2444.
  • [161] Stavridi ES, Halazonetis TD. p53 and stress in the ER. Genes &development. 2004;18(3):241-4.
  • [162] Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O,Hatzoglou M, et al. Endoplasmic reticulum stress inducesp53 cytoplasmic localization and prevents p53-dependentapoptosis by a pathway involving glycogen synthase kinase-3beta. Genes & development. 2004;18(3):261-77.
  • [163] Hamstra DA, Bhojani MS, Griffin LB, Laxman B, Ross BD,Rehemtulla A. Real-time evaluation of p53 oscillatorybehavior in vivo using bioluminescent imaging. Cancerresearch. 2006;66(15):7482-9.[Crossref]
  • [164] Wang Y, Paszek P, Horton CA, Kell DB, White MR, BroomheadDS, et al. Interactions among oscillatory pathways inNF-kappa B signaling. BMC systems biology. 2011;5:23.
  • [165] Liu C, Lin JD. PGC-1 coactivators in the control of energymetabolism. Acta biochimica et biophysica Sinica.2011;43(4):248-57.
  • [166] Igarashi T, Izumi H, Uchiumi T, Nishio K, Arao T, TanabeM, et al. Clock and ATF4 transcription system regulatesdrug resistance in human cancer cell lines. Oncogene.2007;26(33):4749-60.[Crossref]
  • [167] Asher G, Schibler U. Crosstalk between components ofcircadian and metabolic cycles in mammals. Cell metabolism.2011;13(2):125-37.[Crossref]
  • [168] Kohyama J. The possible long-term effects of early-lifecircadian rhythm disturbance on social behavior. Expertreview of neurotherapeutics. 2014;14(7):745-55.
  • [169] Guarente L. Calorie restriction and sirtuins revisited. Genes &development. 2013;27(19):2072-85.
  • [170] Wu X, Xin Z, Zhang W, Zheng S, Wu J, Chen K, et al. A missensepolymorphism in ATF6 gene is associated with susceptibilityto hepatocellular carcinoma probably by altering ATF6 level.International journal of cancer Journal international ducancer. 2014;135(1):61-8.
  • [171] Peng J, Chen YY, Yang LX, Zhao XY, Gao ZQ, Yang J, et al.XBP1 promoter polymorphism modulates platinum-basedchemotherapy gastrointestinal toxicity for advancednon-small cell lung cancer patients. Lung cancer (Amsterdam,Netherlands). 2013;80(3):333-8.
  • [172] Andersen V, Christensen J, Overvad K, Tjonneland A, VogelU. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC cancer.2010;10:484.[Crossref]
  • [173] Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms:cancer implications. Nature reviews Cancer.2009;9(2):95-107.[Crossref]
  • [174] Shimoyama Y, Mitsuda Y, Tsuruta Y, Suzuki K, Hamajima N,Niwa T. SIRTUIN 1 gene polymorphisms are associated withcholesterol metabolism and coronary artery calcification inJapanese hemodialysis patients. Journal of renal nutrition: the official journal of the Council on Renal Nutrition of theNational Kidney Foundation. 2012;22(1):114-9.
  • [175] Kim E, Lee SH, Lee KS, Cheong HK, Namkoong K, Hong CH,et al. AMPK gamma2 subunit gene PRKAG2 polymorphismassociated with cognitive impairment as well as diabetes inold age. Psychoneuroendocrinology. 2012;37(3):358-65.[Crossref]
  • [176] Santos DG, Resende MF, Mill JG, Mansur AJ, Krieger JE, PereiraAC. Nuclear Factor (NF) kappaB polymorphism is associatedwith heart function in patients with heart failure. BMCmedical genetics. 2010;11:89.
  • [177] Rouzier R, Pronzato P, Chereau E, Carlson J, Hunt B, ValentineWJ. Multigene assays and molecular markers in breast cancer:systematic review of health economic analyses. Breast cancerresearch and treatment. 2013;139(3):621-37.
  • [178] Hunerdosse D, Nomura DK. Activity-based proteomic andmetabolomic approaches for understanding metabolism.Current opinion in biotechnology. 2014;28:116-26.
  • [179] Loke YK, Kwok CS, Singh S. Comparative cardiovasculareffects of thiazolidinediones: systematic review andmeta-analysis of observational studies. Bmj. 2011;342:d1309.
  • [180] Verschuren L, Wielinga PY, Kelder T, Radonjic M, Salic K,Kleemann R, et al. A systems biology approach to understandthe pathophysiological mechanisms of cardiac pathologicalhypertrophy associated with rosiglitazone. BMC medicalgenomics. 2014;7:35.
  • [181] Tabas I, Glass CK. Anti-inflammatory therapy in chronicdisease: challenges and opportunities. Science.2013;339(6116):166-72.
  • [182] Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, et al. A gutmicrobiota-targeted dietary intervention for amelioration ofchronic inflammation underlying metabolic syndrome. FEMSMicrobiology Ecology. 2014;87(2):357-67.[Crossref]
  • [183] Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, VitaternaMH, et al. Circadian disorganization alters intestinalmicrobiota. PloS one. 2014;9(5):e97500.
  • [184] Henao-Mejia J, Strowig T, Flavell RA. Microbiota keep theintestinal clock ticking. Cell. 2013;153(4):741-3.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_ersc-2015-0003
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.