Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 22 | 1 | 45-59

Article title

Arsenic Immobilization by Nanoscale Zero-Valent Iron / Immobilizacja Arsenu Przez Nanożelazo Na Zerowym Stopniu Utlenienia

Content

Title variants

Languages of publication

EN

Abstracts

EN
Contaminated mine water from the Kank site (Czech Republic) containing arsenic at a concentration of approximately 85 mg/dm3 was tested in a reaction with elemental iron nanoparticles. In a reductive environment there was a reduction of As to the more soluble and toxic form of As(III) depending on the pH of the solution. Oxidation of elemental iron creates oxyhydroxides which incorporate As into their structure in the form of mixed complexes and thereby remove and bind dissolved As from the solution. The addition of 0.5 g/dm3 nZVI to the contaminated water leads to a significant decrease in ORP and concentrations of As to around the detection limit. The pH of the solution is not significantly affected by the addition of nZVI. The main competing anion for co-precipitation is represented by phosphates whose concentration after the addition of nZVI was reduced to 6.5% of the original value. The resulting precipitates were analyzed by XPS, XRF, XRD, SEM-EDX and Mössbauer spectroscopy. The presence of jarosite, Schwertmannite and also arsenic probably in the form of skorodite was confirmed
PL
W Kaňk (Czeska Republika) znajduje się zanieczyszczona woda z kopalni, zawierająca arsen o przybliżonym stężeniu 85 mg/dm3. Została ona poddana reakcji z nanocząteczkami żelaza na zerowym stopniu utlenienia (nZVI). W zależności od pH roztworu w środowisku redukcyjnym przebiegła reakcja redukcji As do bardziej rozpuszczalnej i toksycznej formy As(III). Poprzez utlenienie elementarnego żelaza powstają tlenowodorotlenki, łączące się z As w postać kompleksów mieszanych, tym samym usuwając As z zanieczyszczonego roztworu. Dodatek 0,5 g/dm3 nZVI do zanieczyszczonej wody prowadzi do znaczącego spadku wartości ORP i obniżenia stężenia As do granic wykrywalności. Dodatek nZVI nie ma znaczącego wpływu na wartość pH roztworu. Głównym anionem konkurującym we współstrąceniu As jest anion fosforanowy, którego stężenie po dodaniu nZVI zmniejszyło się do 6,5% w porównaniu do wartości wyjściowej. Powstały osad został poddany analizie metodami: XPS XRF, XRD, SEM-EDX i spektroskopią Mössbauerowską. Została potwierdzona obecność jarosytu, schwertmannitu oraz arsenu prawdopodobnie w postaci skorodytu

Publisher

Year

Volume

22

Issue

1

Pages

45-59

Physical description

Dates

published
1 - 3 - 2015
online
18 - 4 - 2015

Contributors

author
  • Technical University of Liberec, Studentska 2, CZ46117 Liberec, Czech Republic
author
  • Palacky University Olomouc, Krizkovskeho 8, CZ77147 Olomouc, Czech Republic
  • Technical University of Liberec, Studentska 2, CZ46117 Liberec, Czech Republic

References

  • [1] Elliott DW, Zhang WX. Field assessment of nanoscale biometallic particles for groundwater treatment; Environ Sci Technol. 2001;35(24);4922-4926; DOI: 10.1021/es0108584.[Crossref]
  • [2] Macé Ch, Desrocher S, Gheorghiu F, Kane A, Pupeza M, Cernik M, et al. Nanotechnology and groundwater remediation - A step forward in technology understanding. Remediation. 2006;16(2):23-33. DOI: 10.1002/rem.20079.[Crossref]
  • [3] Bruzzoniti MC, Fiore, S. Removal of inorganic contaminants from aqueous solutions: evaluation of the remediation efficiency and of the environmental impact of a zero-valent iron substrate. Water Air Soil Pollut. 2014;225(9);2098-2111; DOI: 10.1007/s11270-014-2098-3.[Crossref]
  • [4] Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere. 2011;82(8):1178-1184. DOI: 10.1016/j.chemosphere.2010.11.075.[WoS][Crossref]
  • [5] Gottinger A, Wild D, McMartin D, Moldovan B, Wang D. Development of an iron-amended biofilter for removal of arsenic from rural Canadian prairie potable water. Conference, WIT Trans Ecol Environ. 2010;135:333-344. DOI: 10.2495/WP100291.[Crossref]
  • [6] Kanel SR, Manning B, Charlet L, Choi H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol. 2005;39:1291-1298. DOI: 10.1021/es048991u.[Crossref][PubMed]
  • [7] Leupin OX, Hug SJ. Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 2005;39:1729-1740. DOI: 10.1016/j.watres.2005.02.012.[Crossref]
  • [8] Capecchi C, Bezbaruah A. Arsenic contaminated groundwater remediation by entrapped nanoscale zero-valent iron. World Environmental and Water Resources Congress: Bearing Knowledge for Sustainability - Proc of the 2011 World Environ Water Resour Congress. 2011;3389-3395.
  • [9] Gupta A, Yunus M, Sankararamakrishnan N. Zerovalent iron encapsulated chitosan nanospheres - A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere. 2012;86(2):150-155. DOI: 10.1016/j.chemosphere.2011.10.003.[PubMed][Crossref][WoS]
  • [10] Krajangpan S, Bezbaruah A, Chisholm B. Groundwater arsenic remediation using amphiphilic polysiloxane graft copolymer coated iron nanoparticles. World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environ and Water Resour Congress. 2011;1083-1088. DOI: 10.1061/41173(414)111.[Crossref]
  • [11] Li Y, Jin Z, Li Tb. Silica fume supported Fe0 nanoparticles for removal of hexavalent chromium and enhanced transport in water and soil. Kuei Suan Jen Hsueh Pao/J Chinese Ceram Soc. 2011;39(7):1211-1217.
  • [12] Li Y, Jin Z, Li Tb, Li S. Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume. Water Sci Technol. 2011;63(12):2781-2787. DOI: 10.2166/wst.2011.454.[WoS][Crossref]
  • [13] Nikolaidis NP, Dobbs GM, Lackovic JA. Arsenic removal by zero-valent iron: Field, laboratory and modeling studies. Water Res. 2003;37:1417-1425. DOI: 10.1016/S0043-1354(02)00483-9.[Crossref][PubMed]
  • [14] Farrell J, Wang J, O’Day P, Conklin M. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environ Sci Technol. 2001;35:2026-2032. DOI: 10.1021/es0157595.[PubMed][Crossref]
  • [15] Huang YY, Liu DD, Li GR. Adsorption kinetics of As (III) from groundwater by nanoscale zero-valent iron Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - J China Univ Geosci. 2012;37(2):294-300.
  • [16] Tanboonchuy V, Grisdanurak N, Liao CH. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. J Hazard Mater. 2012;205-206:40-46 DOI: 10.1016/j.jhazmat.2011.11.090.[WoS][Crossref]
  • [17] Zhang W, Wang C, Lien H. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today. 1998;40:387-395. DOI: 10.1016/S0920-5861(98)00067-4. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_eces-2015-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.