Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 21 | 4 | 577-591

Article title

Bioindication as challenge in Modern Environmental Protection

Content

Title variants

Languages of publication

EN

Abstracts

EN
Research into and diagnosis of environmental change prior to the introduction of bioindicator methods were linked primarily to apparatus. Drawing attention to the reactions of organisms sensitive to that change and using them in environmental quality control have opened new opportunities for development of a new scientific discipline, known in the literature as bioindication. Bioindication combines several scientific disciplines, including biology, broadly conceived geography, and chemistry. It thus combines in a comprehensible manner apparatus-derived measurements (chemical analysis results) and areas of bioindicator exposure (situation and distance from the emitter), translating these parameters into bioindicators' anatomical and morphological reactions. The development of bioindicator methods progresses rapidly, and - as is usually the case under such circumstances - it is difficult to ensure that they are transparent and that no chaos ensues. In view of the above, it seems necessary to embark on a discussion of these issues and consider compiling lists of most applicable indicator organisms for examination of particular environmental toxins in particular environments.

Publisher

Year

Volume

21

Issue

4

Pages

577-591

Physical description

Dates

online
2 - 2 - 2015

Contributors

  • Department of Environment Protection and Modelling, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland, phone +48 41 349 64 27, fax +48 41 349 64 18
  • Department of Environment Protection and Modelling, Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland, phone +48 41 349 64 27, fax +48 41 349 64 18

References

  • [1] Bates JW. The effects of impacts on bryophytes and lichens. Air Pollution and Plant Life. 2004;2:345-384.
  • [2] Tyler G. Bryophytes and heavy metals: a literature review. Bot Jourin Linnea Soc. 1990;104:231-253. DOI: 10.1111/j.1095-8339.1990.tb02220.x.[Crossref]
  • [3] Haugsjå PK. Über den Einfluß der Stadt Oslo auf die Flechten - vegetation der Bäume. Nyt Mag Naturvidensk. 1930;68:1-116.
  • [4] Mickiewicz J, Dygna S. Outline of biology. Warszawa: NSP; 1973.
  • [5] Gilbert OL. Further studies on the effect of sulphur dioxide on lichens and bryophytes. New Phytol. 1970;78:605-627.[Crossref]
  • [6] Gillbert OL. A biological scale for the estimation of sulfur dioxide pollution. New Phytol. 1970;79:629-634.[Crossref]
  • [7] Hawksworth DL, Rose F. Lichens as pollution monitors. London: Arnold; 1976.
  • [8] Rühling A, Tyler G. Heavy metal deposition in Scandinavia. Water Air Soil Pollut. 1973;2:445-455. DOI: 10.1007/BF00585089.[Crossref]
  • [9] Rühling A, Tyler G. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis. Environ Pollut. 2004;131:417-423.[PubMed]
  • [10] Pakarinen P, Tolonen K. Regional survey of heavy metals in peat mosses. Ambio. 1976;5:38-40.
  • [11] Pilegaard K. Heavy metals in bulk precipitation and transplanted Hypogymnia physodes and Dicranoweisia cirrata in the vicinity of a Danish steelworks. Water Air Soil Pollut. 1979;11:77-91. DOI: 10.1007/BF00163521.[Crossref]
  • [12] Gydesen H, Pilegaard K, Rasmussen L, Ruhling A. Moss analyses used as a means of surveying the atmospheric heavy metal deposition in Sweden, Denmark and Greenland in 1980. Bulletin SNV PM. 1983;1670:1-44.
  • [13] Rühling A, Rasmussen L, Pilegaard K, Makinen A, Steinnes E. Survez of atmospheric heavy metal deposition in the Nordic countries in 1985 monitored by moss analyses. Nord. 1987;21:1-44.
  • [14] Rühling A, editor. Atmospheric heavy metal deposition in Europe-estimations based on moss analysis. Nord. 1994;9:9-53.
  • [15] Grodzińska K. Mosses as a bioindicators of heavy metal pollution In Polish National Parks. Water Air Soil Pollut. 1978;9:83-97.
  • [16] Grodzińska K. Contamination with heavy metals Polish national parks. Natural Protect. 1980;43:9-27.
  • [17] Grodzińska K, Szarek G, Godzik B. Heavy metal deposition in Polish National Parks. Changes during ten years. Water Air Soil Pollut. 1990;49:409-419.
  • [18] Grodzińska K, Szarek-Łukaszewska G, Godzik B. Survey of heavy metal deposition in Poland using mosses as indicators. Sci Total Environ. 1999;229:41-51. DOI: 10.1016/S0048-9697(99)00071-6.[Crossref]
  • [19] Grodzińska K, Szarek-Łukawska G. Response of mosses to the heavy metal deposition in Poland -an overview. Environ Pollut. 2001;114(3/4):443-451.DOI: 10.1016/S0269-7491(00)00227-X.[Crossref]
  • [20] Makomaska M. Heavy metals contamination of pinewoods in the Niepołomice Forest (Southern Poland). Bull Acad Polon Sci Biol Cl. 1978;II,26:679-685, WOS:A1978GP04100005.
  • [21] Grodzińska K, Kazimierczakowa R. Heavy metal content in the plants of Cracow parks. Bull Acad Pol Sci Cl. 1977;V,25(4):227-234.
  • [22] Godzik B, Kiszka J. Concentration of heavy metals in thalluses of Hypogymnia physodes (L.) Nyl. in the Carna Wisełka and Biała Wisełka catchments. In: Wróbel S, editor. Environmantal degradation of the Czarna Wisełka and Biała Wisełka catchments, Western Carpathians. Studia Nature. 1998;44:73-80.
  • [23] Godzik B, Szarek-Łukaszewska G. Plant bioindicators in the environmental monitoring. Ecol Chem Eng A. 2005;12(7):677-693.
  • [24] Fabiszewski J, Brej T, Bielecki K. Plant reactions as indicators of air pollution in the vicinity of a copper smelter. Acta Soc Bot Pol. 1987;56(2):353-363.WOS:A1987K004000014.
  • [25] Cieśliński S, Jaworska E. Changes in the lichen flora of pine (Pinus silvestris L) under the influence of greenhouse plants cement and lime industry and mining. Act Mycol. 1986;2(1):3-14.
  • [26] Bystrek J. Epiphytic flora and its disappearance under the influence of air pollution. Zones of environmental pollution in the province Chelm on the basis of licheno- and bioindicative. MC-S University. 1988;43:185-213.
  • [27] Seaward MRD, Heslop JA, Green D, Bylińska EA. Recent levels of radionuclides in lichens from southwest Poland with particular reference to 134 Cs and 137 Cs. J Environ Radioactiv. 1988;7:123-129.
  • [28] Kiszka J, Piórecki J. Lichenoindication research in Przemyśl region. J Przemyśl. 1990;19:281-290.
  • [29] Czarnota P. The content of micro-and macroelements in Hypogymnia physodes thalli in Gorce National Park - Lichenoindication test. National Parks and Nature Reserve. 1995;14(3):69-88.
  • [30] Sawicka-Kapusta K, Zakrzewska M, Gdula-Argasińska J. Air pollution in the base stations of the Environmental Integrated Monitoring System in Poland. Air Pollut. 2005;XIII:465-475. WOS: 000230300700049.
  • [31] Jóźwiak MA, Jóźwiak M. Influence of cement industry on accumulation of heavy metals in bioindicators. Ecol Chem Eng S. 2009;16(3):323-334.WOS:000272740900006.
  • [32] Jóźwiak MA, Jóźwiak M, Kozłowski R. Bioindicative assessment methods of urban transport impact on the natural environment. Monographs of Systems Operations Team PAS. 2010;II:177-199.
  • [33] Jóźwiak MA. The use of indicative organisms in bioindication of land and water environments with the chosen examples. Kielce: Kielce Scientific Society; 2014.
  • [34] Serafiński W, Szulakowska G, Wielgus-Serafińska E, Sajdak G. Studies on biology of fresh-water snails from Silesian Industrial Area. III. Accumulation and localization of lead in shells and tissues of Planorbariuscorneus (L.). Acta Biol. 1978;5:19-23.
  • [35] Pieczyńska E. The role of macrophytes in shaping trophic lakes. Ecol News. 1988;34:375-405.
  • [36] Strzelec M, Serafiński W. Live cycles freshwater planorbid snails in anthropogenic water bodies. Acta Biol Siles. 1994;24:104-117.
  • [37] Strzelec M. The effects of elevated water temperature on occurrence of freshwater snails in Rybnik dam reservoirs (Upper Silesia, Poland). Folia Malacologica. 1999;7:93-98.
  • [38] Gorzel M. Kornijów R. Biological evaluation of the quality of river water. Space - The Problems of Biol Sci. 2004;53(2):183-191.
  • [39] Szoszkiewicz K, Zbierska J, Jusik S, Zgoła T. The assessment method based on macrophyte rivers run in Poland for the purposes of the Water Framework Directive. Messages Drainage and Grasses Area. 2008;LI(4):163-165.
  • [40] Ellenberg H. Zeigerwerte der Gefaßpflanzen Mitteleuropas, 2. Aufl. Scripta Geobotan. 1979;9:1-122.
  • [41] Ellenberg H. Belastung und Belastbarkeit von Ökosystemen, Tagungsbericht der Gesellschahh für Ökologie. Giessen: 1972;2:34-42.
  • [42] Barker MJ. Biological monitoring principles methods and difficulties. In: Barker MJ, editor. Marine ecology and oil pollution. New York: Wiley and Sons. Inc.; 1976;4:41-53.
  • [43] Bick H. Bioindikatoren und Umweltschutz. Berlin: Dechemniana - Beichefte; 1982.
  • [44] Burton MAS. Biological monitoring of environmental contaminants (plants). Rapost 32. GEMS -Monitoring and Assessment Research Centre. London: King's College London, University of London; 1986.
  • [45] Vinogradov BV. Remote sansing bioindication errors. In: Bohac J, editor. Bioindycatores ReVIth Int. Conf. Ceskie Budejovice. 1992;4:53-59.
  • [46] Majstrik V. Principles of Bioindication and Biomonitoring Theoretical Problems and Practical Applications. In: Bohac J, editor. Bioindicatores Deteriorisationi Regions. Ceskie Budejowice, 1992;2:11-23. Carreras HA, Pignata ML. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut. 2002;117:77-87.
  • [48] Calvelo S, Liberatore S. Applicability of in situ or transplanted lichens for assessment of atmospheric pollution in Patagonia, Argentina. J Atmospher Chem. 2004;49:199-210. DOI: 10.1007/s10874-004-1225-8.[Crossref]
  • [49] Conti ME, Tudino M, Stripeikis J, Cecchetti G. Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, rural and industrial sites in Central Italy. J Atmospher Chem. 2004;49:83-94. DOI: 10.1007/s10874-004-1216-9.[Crossref]
  • [50] Kosiba P. Biomonitoring of air reactions of mosses in conditions of pollution with industry emissions. Bot U Wroc. 2004;3:74-77.
  • [51] Sloof JE. Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmospher Environ. 1995;29:11-20.[Crossref]
  • [52] Garty J, Kauppi M, Kauppi A. The influence of air pollution on the concentration of airborne elements and on the production of stress-ethylene in the lichen Usnea hirta (L) Weber em Mot transplanted in urban sites in Oulu, N Finland. Arch Environ Contam Toxicol. 1997;32:285-290. DOI: 10.1007/s002449900186.[Crossref]
  • [53] González CM, Orellana LC, Casanovas SS, Pignata ML. Environmental conditions and chemical response of transplanted lichen to an urban area. J Environ Manage. 1998;53:73-81.[Crossref]
  • [54] Carreras HA, Pignata ML. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut. 2002;117:77-87.[Crossref]
  • [55] Malkholm MM, Bennett JP. Mercury accumulation in transplanted Hypogymnia physodes lichens downwind of Wisconsin chloralkali plant. Water Air Soil Pollut. 1998;102:427-436.
  • [56] Jensen M, Chakir S, Feige GB. Osmotic and atmospheric dedratation effects in the lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica. 1999;37(3):393-404.[Crossref]
  • [57] Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment -a review. Environ Pollut. 2001;114:471-492.[Crossref]
  • [58] Białońska D, Dayan FE. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J Chem Ecol. 2005;31(12):2975-2991. DOI: 10.1007/s10886-005-8408-x.[Crossref]
  • [59] Sawicka-Kapusta K. Zakrzewska M, Bydłoń G. Biological monitoring - the useful method for estimation of fair and environment quality. Air Pollut. 2007;XV:353-362.
  • [60] Jóźwiak M. Accumulation of heavy metals and morphological changes in thalli of Hypogymnia physodes (L.)Nyl.) lichen. Natural Environ Monit. 2007;8/07:51-56.
  • [61] Cortés E. Investigation of air pollution in Chile using biomonitors. J Radioanalyt Nuclear Chem. 2003;262(1):269.276.
  • [62] Godinho RM, Freitas MC, Wolterbeek HT. Assessment of lichen vitality during transplantation experiment to a polluted site. J Atmospher Chem. 2004;49(1-3):355-361.
  • [63] Poličnik H, Batič F, Cvetka RL. Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.). J Atmospher Chem. 2004;49:223-230.
  • [64] Garty J, Levin T, Lehr H, Tomer S, Hochman A. Interactive effects of UV-B radiation and chemical contamination on physiological parameters in the lichen Ramalina lacer. J Atmospher Chem. 2004;49:267-289.
  • [65] Vestergaard NK, Stephansen U, Rasmussen L, Pilegaard K. Airborne heavy metal pollution in the environment of a Danish steel plant. Water Air Soil Pollut. 1986;27(3-4):363-377. DOI: 10.1007/BF00649418.[Crossref]
  • [66] Motiejflnaité J. Epiphytic lichen community dynamics in deciduous forests around a phosphorus fertiliser factory in Central Lithuania. Environ Pollut. 2007;146:341-350.[Crossref]
  • [67] Jeran Z, Byrne AR, Batić F. Transplanted epiphytic lichens as biomonitors of air - contamination by natural radionuclides around the Źirowski VRH Uranium Mine, Slovenia. Lichenologist. 1995;27(5):375-385.
  • [68] Calatayud A, Temple PJ, Barrend E. Chlorophyll a fluorescence emission, xanthophyll cycle activity, and net photosynthetic rate responses to ozone in some foliose and friutcose lichen species. Photosyntetica. 2000;38:281-286.
  • [69] Brodo IM. Transplanted experiments with corticolus lichens using a new technique. Ecology. 1961;42:838-841.[Crossref]
  • [70] Mizera A. Soil. Mechanisms of degradation and restoration method. Publication GreenWorld - Environ Protect and Ecol. 2007;1:73-79.
  • [71] De Jonie H, Freijer JI. Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils. Environ Sci Technol. 1997;7:389-402.
  • [72] Czerniawska-Kusza I, Szoszkiewicz K. Biological or Hydromorphological Assessment of Flowing Water on the Example of the River Small Panew. Opole: Department of Land Protection, University of Opole; 2007.
  • [73] Nałęcz-Jawecki G. Aquatic toxicity test method bioindicative. Biul Farmac. 2003;2:34-39.
  • [74] Elder JF, Collins JJ, Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems. Rev Environ Contam Toxicol. 1991;122:37-79.
  • [75] Jurkiewicz-Karnkowska E, Krolak E. Heavy metal concentrations in molluscs from the Zegrzynski Reservoir and the rivers supplying it. Pol Arch Hydrobiol. 1996;43(3):335-346.
  • [76] Piotrowski S. Heavy metal contents in shells of Lymnaea peregra (O.F. Müll.) and Lymnaea stagnalis (L.) from a fish pond in the area of Kłeby near Nowogard. Quaternary Studies in Poland, Special Issue. 1999; 281-288.
  • [77] Van-Balognah K, Fernandez DS, Salanki J. Heavy metal concentrations of Lymnea stagnalis L. in the environs of lake Balaton (Hungary). Wat Res. 1988;22:1205-1210.
  • [78] Gomot-de Vaufleury A, Kerhoas I. Bull of Environ Contamin and Toxicol. 2000;64(3):434-442.
  • [79] Coeurdassier M, Scheifler R, de Vaufleury A, Crini N, Saccomani C, Salomon Du Mont L, et al. Earthworms influence metal transfer from soil to snails. Applied Soil Ecol. 2007;35(2):302-310.
  • [80] Chitmanat C, Pracobsin N, Chaibu P, Traichaiyapom S. The use of acetylcholinesterase inhibition in river snails (Sinotaia ingallsiana) to determine the pesticide contamination in the Upper Ping River. Int J Agricult and Biol. 2008;10(6):658-660.
  • [81] Parleman H, Meili M. Mercury in macroinvertebrates from Swedish forest lakes: influence of lake type, habitat, life cycle and food quality. Can J Fish Aquat Sci. 1993;50:521-534.
  • [82] Scott-Fordsmand JJ, Weeks JM, Hopkin SP. Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetida (Oligochaeta: Annelida), using neutral-red retention assay. Environ Toxicol Chem. 2000;19:1774-1780.[Crossref]
  • [83] Berger B, Dallinger R. Terrestrial snails as quantitative indicators of environmental metal pollution. Environ Monit Assess. 1993;25:65-84. DOI: 10.1007/BF00549793.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_eces-2014-0041
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.