Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 36 | 2 | 251-262

Article title

Comparison of Large Eddy Simulations and κ-ε Modelling of Fluid Velocity and Tracer Concentration in Impinging Jet Mixers

Content

Title variants

Languages of publication

EN

Abstracts

EN
Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.

Keywords

EN
jet mixers   mixing   PIV   PLIF   LES  

Publisher

Year

Volume

36

Issue

2

Pages

251-262

Physical description

Dates

published
1 - 6 - 2015
received
1 - 4 - 2015
revised
1 - 6 - 2015
accepted
1 - 6 - 2015
online
17 - 7 - 2015

Contributors

  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego Street 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego Street 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego Street 1, 00-645 Warsaw, Poland

References

  • Bałdyga J., 1989. Turbulent mixer model with application to homogeneous, instantaneous chemical reactions. Chem. Eng. Sci., 44, 1175-1182. DOI: 10.1016/0009-2509(89)87016-2.
  • Bałdyga J., Bourne J.R., 1999. Turbulent mixing and chemical reactions. Wiley, Chichester.
  • Cook A. W., Riley J.J., 1994. A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids, 6, 2868-2870. DOI: 10.1063/1.868111.
  • Icardi M., Gavi E., Marchisio D.L., Olsen M.G., Fox R.O., Lakehal D., 2011. Validation of LES predictions for turbulent flow in a Confined Impinging Jets Reactor. Appl. Math. Modell., 35, 1591-1602. DOI: 10.1016/j.apm.2010.09.035.
  • Johnson B.K., Prud’homme R.K., 2003. Chemical processing and micromixing in confined impinging jets. AIChE J., 49, 2264-2282. DOI: 10.1002/aic.690490905.
  • Kölbl A., Kraut M., Wenka A., 2011. Design parameter studies on cyclone type mixers. Chem. Eng. J., 167, 444-454. DOI: 10.1016/j.cej.2010.08.092.
  • Lince F., Marchisio D.L., Barresi A.A., 2008. Strategies to control the particle size distribution of poly- ε-caprolactone nanoparticles for pharmaceutical applications. J. Colloid Interface Sci., 322, 505-515. DOI: 10.1016/j.jcis.2008.03.033.
  • Liu Y., Cheng C., Prud’homme R.K., Fox R.O., 2008. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem. Eng. Sci., 63, 2829-2842. DOI: 10.1016/j.ces.2007.10.020.
  • Makowski Ł., Bałdyga J., 2011. Large Eddy Simulation of mixing effects on the course of parallel chemical reactions and comparison with k-ɛ modeling. Chem. Eng.Process, 50, 1035-1040. DOI: 10.1016/j.cep.2011.06.003.
  • Makowski Ł., Orciuch W., Bałdyga J., 2012. Large eddy simulations of mixing effects on the course of precipitation process. Chem. Eng. Sci., 77, 85-94. DOI: 10.1016/j.ces.2011.12.020.
  • Marchisio D.L., 2009. Large Eddy Simulation of mixing and reaction in a Confined Impinging Jets Reactor. Comput. Chem. Eng., 33, 408-420. DOI: 10.1016/j.compchemeng.2008.11.009.
  • Michioka T., Komori S., 2004. Large-Eddy simulation of a turbulent reacting liquid flow. AIChE J., 50, 2705-2720. DOI: 10.1002/aic.10218.
  • Midler M., Paul E.L., Whittington E.F., Futran M., Liu P.D., Hsu J., Pan S.H., 1994. US Patent 5 314 506.
  • Mortensen M., Orciuch W., Bouaifi M., Andersson B., 2004. Mixing of a jet in a pipe. Chem. Eng. Res. Des., 82, 357-363. DOI: 10.1205/026387604322870462.
  • Pitsch H., Steiner H., 2000. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids, 12, 2541-2554. DOI: 10.1063/1.1288493.
  • Pope S. B., 2004. Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys., 6, 35. DOI: 10.1088/1367-2630/6/1/035.
  • Ranade V.V., 2002. Computational flow modeling for chemical reactor engineering. Academic Press, California.
  • Santillo G., Deorsola F.A., Bensaid S., Russo N., Fino D., 2012. MoS2 nanoparticle precipitation in turbulent micromixers. Chem. Eng. J., 207-208, 322-328,. DOI: 10.1016/j.cej.2012.06.127.
  • Schwertfirm F., Manhart M., 2010. A numerical approach for simulation of turbulent mixing and chemical reaction at high Schmidt numbers, In: Bockhorn H., Mewes D., Peukert W., Warnecke H.J. (Eds.), Micro and Macro Mixing. Springer-Verlag, Berlin, 305-324.
  • A. Tamir, 1994. Impinging-Stream Reactors. Elsevier Science B.V., Amsterdam

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_cpe-2015-0017
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.