Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |

Article title

Parametric generation of high frequency coherent
light in negative index materials and materials
with strong anomalous dispersion

Content

Title variants

Languages of publication

EN

Abstracts

EN
We demonstrate the possibility of generation of
coherent radiation with tunable frequencies higher than
the frequency of the driving field vd in a nonlinear medium
utilizing the difference combination resonance that occurs
when vd matches the difference of the frequencies of the
two generated fields ω1 and ω2. We find that such a resonance
can appear in materials which have opposite signs
of refractive index at ω1 and ω2. It can also occur in positive
refractive index materials with strong anomalous dispersion
if at one of the generated frequencies the group
and phase velocities are opposite to each other. We show
that the light amplification mechanism is equivalent to a
combination resonance in a system of two coupled parametric
oscillators with the opposite sign of masses. Such
a mechanism holds promise for a new kind of light source
that emits coherent radiation of tunable wavelengths by
an optical parametric amplification process with the frequency
higher than vd.

Keywords

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

accepted
19 - 1 - 2015
online
23 - 3 - 2015
received
7 - 11 - 2014

Contributors

  • Texas A&M University, College Station TX 77843
  • Princeton University, Princeton NJ 08544
author
  • Texas A&M University, College Station TX 77843
author
  • Texas A&M University, College Station TX 77843
  • Baylor University, Waco, TX 76706
author
  • Texas A&M University, College Station TX 77843
  • Xi’an Jiaotong University, Xi’an, China

References

  • [1] P.A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, Phys. Rev.Lett. 7, 118 (1961).
  • [2] W. Kaiser and C.G.B. Garrett, Phys. Rev. Lett. 7, 229 (1961).
  • [3] P.D. Maker and R.W. Terhune, Phys. Rev. 137, A801 (1965).
  • [4] P.D. Maker, R.W. Terhune and C.M. Savage, Phys. Rev. Lett. 12,507 (1964).
  • [5] D. A. Long, The Raman Effect: A Unified Treatment of the Theoryof Raman Scattering by Molecules, (John Wiley & Sons Ltd,2002)
  • [6] E. Garmire, Opt. Express 21, 30532 (2013).
  • [7] S. Mukamel, Principles of Nonlinear Optical Spectroscopy, 3rded. (Oxford University Press, Oxford New York, 1995).
  • [8] W. Denk, J. Strickler and W. Webb, Science 248, 73 (1990).
  • [9] Z. Zalevsky, J. Nanophoton. 1, 012504 (2007).
  • [10] F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rep. 428, 53(2006).
  • [11] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, NewYork, 2008).
  • [12] R. H. Kingston, Proc. IRE 50, 472 (1962).
  • [13] N. M. Kroll, Phys. Rev. 127, 1207 (1962).
  • [14] S. A. Akhmanov and R. V. Khokhlov, Zh. Eksp. Teor. Fiz. 43, 351(1962)
  • [Sov. Phys. JETP 16, 252 (1963)].
  • [15] J.A. Giordmaine and R.C. Miller, Phys. Rev. Lett. 14, 973 (1965).
  • [16] W.R. Bosenberg, W.S. Pelouch, and C.L. Tang, Appl. Phys. Lett.55, 1952 (1989).
  • [17] H. Heffner and G. Wade, J. Appl. Phys. 29, 1321 (1958).
  • [18] P.K. Tien, J. Appl. Phys. 29, 1347 (1958).
  • [19] T. C.Marshall, Free Electron Lasers, (MacMillan Publishing, NewYork 1985).
  • [20] M.I. Shalaev, S.A.Myslivets, V.V. Slabko and A.K. Popov, OpticsLett. 36, 3861 (2011).
  • [21] A.K. Popov, M.I. Shalaev, S.A. Myslivets, V.V. Slabko and I.S.Nefedov, Appl. Phys. A 109, 835 (2012).
  • [22] A.K. Popov, M.I. Shalaev, S.A. Myslivets and V.V. Slabko, Appl.Phys. A 115, 523 (2014).
  • [23] C.S. Hsu, J. Appl. Mechanics 30, 367 (1963).
  • [24] A.H. Nayfen and D.T. Mook, J. Acoust. Soc. America 62, 375(1977).
  • [25] A.H. Nayfen, Nonlinear Interactions: Analytical, Computationaland Experimental Methods, (2000) Wiley.
  • [26] J. G. Vioque, A. R. Champneys, and M. Truman, Bol. Soc. Esp.Mat. Apl. 51, 63 (2010).
  • [27] A. A. Svidzinsky, L. Yuan, and M. O. Scully, Phys. Rev. X 3,041001 (2013).
  • [28] G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden,Science 312, 892 (2006).
  • [29] S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M.Shalaev, Opt. Lett. 34, 3478 (2009).
  • [30] B. Edwards, A. Alú, M. E. Young, M. Silveirinha, and N. Engheta,Phys. Rev. Lett. 100, 033903 (2008).
  • [31] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305,788 (2004).
  • [32] S. A. Ramakrishma, Rep. Prog. Phys. 68, 449 (2005).
  • [33] Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011).
  • [34] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEETrans. Microwave Theory Tech. 47, 2075 (1999).
  • [35] A. Rose, S. Larouche, and D. R. Smith, Phys. Rev. A 84, 053805(2011).
  • [36] A. Rose and D. R. Smith, Opt. Mater. Express 1, 1232 (2011).
  • [37] A. K. Popov and V. M. Shalaev, Appl. Phys. B 84, 131 (2006).
  • [38] A. Rose, D. Huang, and D. R. Smith, Phys. Rev. Lett. 107, 063902(2011).
  • [39] H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, andX. Zhang, Science 342, 1223 (2013).
  • [40] C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta and A.Alù, Phys. Rev. B 85, 045129 (2012).
  • [41] D. Huang, A. Rose, E. Poutrina, S. Larouche, and D. R. Smith,Appl. Phys. Lett. 98, 204102 (2011).
  • [42] M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, Phys.Rev. A 84, 063826 (2011).
  • [43] N. Lazarides, M. Eleftheriou, and G. P. Tsironis, Phys. Rev. Lett.97, 157406 (2006).
  • [44] Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, Phys. Rev. Lett. 99,153901 (2007).
  • [45] A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. Lett.91, 037401 (2003).
  • [46] D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, and M. V. Gorkunov,Appl. Phys. Lett. 91, 144107 (2007).
  • [47] A. K. Popov and V. M. Shalaev, Opt. Lett. 31, 2169-2171 (2006).
  • [48] N. M. Litchinitser and V. Shalaev, Nat. Photonics 3, 75 (2009).
  • [49] E. Poutrina, S. Larouche, and D. R. Smith, Opt. Commun. 283,1640 (2010).
  • [50] Y. Ding and J. Khurgin, IEEE J. QuantumElectron. 32, 1574 (1996).
  • [51] A.M. Steinberg, P.G. Kwiat and R.Y. Chiao, Phys. Rev. Lett. 71,708 (1993).
  • [52] S. Longhi, M. Marano, M. Belmonte and P. Laporta, IEEE J. Sel.Top. Quantum Electron. 9, 4 (2003).
  • [53] L.V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature (London)397, 594 (1999).
  • [54] C. Liu, Z. Dutton, C. H. Behroozi, and L.V. Hau, Nature (London)409, 490 (2001).
  • [55] M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M.Lukin, Y. Rostovtsev, E. Fry and M. Scully, Phys. Rev. Lett. 82,5229 (1999).
  • [56] D.F. Phillips, A. Fleischhauer, A. Mair and R.L. Walsworth, Phys.Rev. Lett. 86, 783 (2001).
  • [57] A.V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A.Musser, B.S. Ham and P.R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
  • [58] Q. Yang, J.T Seo, B. Tabibi and H. Wang, Phys. Rev. Lett. 95,063902 (2005).
  • [59] W. Schleich and co-workers have developed an insightful analysisof the QASER amplification mechanism based on the negativemass approach. We thank Prof. Schleich for sharing hiswork with us.
  • [60] X. Zhang and A.A. Svidzinsky, Phys. Rev. A 88, 033854 (2013).
  • [61] P.H. Tsao, Am. J. Phys. 61, 823 (1993).
  • [62] L.D. Landau and E.M. Lifshitz, Electrodynamics of ContinuousMedia, Pergamon Press (1960) p. 334.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_coph-2015-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.