Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 1 | 1 |

Article title

3-Hydroxycineole bioproduction from 1,8-cineole using Gymnopilus spectabilis 7423 under resting cell conditions

Content

Title variants

Languages of publication

EN

Abstracts

EN
This report describes the high yield
biotransformation of 1,8-cineole by the strain Gymnopilus
spectabilis 7423, a common fungus isolated from the
Eucalyptus tree. The biotransformation was conducted
under resting cell conditions and different parameters
were tested in order to achieve up to 90% bioconversion.
Only two regioisomers were detected, and they were
identified as 3-α-hydroxy-1,8-cineole and 2-α-hydroxy-1,8-
cineole obtained in a 82:8 ratio.

Publisher

Journal

Year

Volume

1

Issue

1

Physical description

Dates

accepted
1 - 5 - 2015
online
11 - 6 - 2015
received
4 - 2 - 2015

Contributors

author
  • Laboratorio de Biocatálisis y Biotransformaciones,
    DQO-DEPBIO, Facultad de Química, Universidad de la República
    (UdelaR), Montevideo, Uruguay
author
  • Laboratorio de Biocatálisis y Biotransformaciones,
    DQO-DEPBIO, Facultad de Química, Universidad de la República
    (UdelaR), Montevideo, Uruguay
  • Laboratorio de Biocatálisis y Biotransformaciones,
    DQO-DEPBIO, Facultad de Química, Universidad de la República
    (UdelaR), Montevideo, Uruguay
author
  • Laboratorio de Biocatálisis y Biotransformaciones,
    DQO-DEPBIO, Facultad de Química, Universidad de la República
    (UdelaR), Montevideo, Uruguay
  • Laboratorio de Biocatálisis y Biotransformaciones,
    DQO-DEPBIO, Facultad de Química, Universidad de la República
    (UdelaR), Montevideo, Uruguay
  • Laboratorio de Biocatálisis y Biotransformaciones,
    DQO-DEPBIO, Facultad de Química, Universidad de la República
    (UdelaR), Montevideo, Uruguay

References

  • [1] Andreoni M.I., Bussoni A., Evaluación económica de dosprogramas de mejoramiento genético en Eucalyptus grandis,Agrociencia, 2014, 153-162, (in Spanish).
  • [2] MGAP Superficie total de bosques. http://www.mgap.gub.uy/portal/page.aspx?2,dgf,dgf-recurso-forestal,O,es,0 (accessed30/04/2015).
  • [3] Rodriguez P., Sierra W., Rodríguez S., Menéndez P., Biotransformationof 1,8-cineole, the main product of Eucalyptus oils,Electronic Journal of Biotechnology, 2006, 9, 232-236.
  • [4] Lawrence B.M., 1,8-Cineole rich eucalyptus oils, Perfumer andFlavorist, 1997, 22, 49-51.
  • [5] Guenther E., The essential oils, vol. II, Robert E. KriegerPublishing, Malabar, Florida, 1975, p. 852.
  • [6] (a) De Boggiatto M.V., De Heluani C.S., De Fenik I.J.S., CatalanC.A.N., Regiospecific functionalization of the monoterpeneether 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane (1,8-cineole).Synthesis of the useful bridged γ-lactone 1,3-dimethyl-2-oxabicyclo[2.2.2]octan-3->5-olide, J. Org. Chem., 1987, 52,1505-1511; (b) Carman R.M., Robinson W.T., Wallis C.J., The3-hydroxycineoles, Aust. J. Chem., 2005, 58, 785-791.
  • [7] (a) Slessor K.E., Hawkes D.B., Farlow A., Pearson A.G., StokJ.E., De Voss J.J., An in vivo cytochrome P450 cin (CYP176A1)catalytic system for metabolite production, J. Mol. Catal. B:Enzym., 2012, 79, 15-20; (b) Gopkumar P., Gopal M., SrideviG., Biotransformation of 1, 8-cineole by Rhizopus arrizus, J.Pharm. Chem, 2007, 1, 10-14; (c) Abraham W.-R., Phylogeneticinfluences in microbial hydroxylation of terpenoids, World J.Microb. Biot., 1994, 10, 88-92; (d) Miyazawa M., Nakaoka H.,Hyakumachi M., Kameoka H., Biotransformation of 1, 8-cineoleto (+)-2-endo-hydroxy-1, 8-cineole by Glomerella cingulata,ChemInform, 1991, 22, ; (e) Trudgill P.W., Microbial metabolismof monoterpenes: recent developments, Biodegradation,1990, 1, 93-105; (f) MacRae I.C., Alberts V., Carman R., ShawI., Products of 1, 8-cineole oxidation by a pseudomonad, Aust.J. Chem., 1979, 32, 917-922; (g) Carman R.M., MacRae I.C.,Perkins M., The oxidation of 1,8-cineole by Pseudomonas flava,Aust. J. Chem., 1986, 39, 1739-1746; (h) García C., Rodríguez P.,Días E., Heinzen H., Menéndez P., Biooxidation of 1,8-cineoleby Aspergillus terreus, J. Mol. Catal. B: Enzym., 2009, 59,173-176; (i) Nishimura H., Noma Y., Mizutani J., Eucalyptusas biomass. Novel compounds from microbial conversion of1,8-cineole, Agr. Biol. Chem., 1982, 46, 2601-2604; (j) Liu W.G.,Rosazza J., Stereospecific hydroxylation of 1,8-cineole using amicrobial biocatalyst, Tetrahedron Lett., 1990, 31, 2833-2836;(k) Williams R., Trudgill P., Taylor D., Metabolism of 1,8-cineoleby Rhodococcus species: ring cleavage reactions, J. Gen.Microbiol., 1989, 135, 1957-1967.
  • [8] (a) Duke S.O., Natural pesticides from plants, In: Janick J.;Simon J.E. (Eds.), Advances in new crops, Timber Press,Portland, OR, 1990, pp. 511-517; (b) Batish D.R., Singh H.P.,Kohli R.K., Kaur S., Eucalyptus essential oil as a naturalpesticide, Forest Ecol. Manag., 2008, 256, 2166-2174.
  • [9] Genta M.T., Villa C., Mariani E., Loupy A., Petit A., RizzettoR., Mascarotti A., Morini F., Ferro M., Microwave-assistedpreparation of cyclic ketals from a cineole ketone as potentialcosmetic ingredients: solvent-free synthesis, odour evaluation,in vitro cytotoxicity and antimicrobial assays, Int. J. Pharm.,2002, 231, 11-20.
  • [10] Asakawa Y., Matsuda R., Tori M., Hashimoto T., Preparationof biologically active substances and animal and microbialmetabolites from menthols, cineoles and kauranes,Phytochemistry, 1988, 27, 3861-3869.
  • [11] Barton A.F., Clarke B.R., Dell B., Knight A.R., Post-emergentherbicidal activity of cineole derivatives, J. Pest. Sci., 2014, 87,531-541.[WoS]
  • [12] Bitteur S.M., Baumes R.L., Bayonove C.L., Versini G., MartinC.A., Dalla Serra A., 2-exo-Hydroxy-1,8-cineole: a newcomponent from grape var. Sauvignon, J. Agric. Food. Chem.,1990, 38, 1210-1213.
  • [13] (a) Hamada H., Ishihara K., Nakajima N., Hamada H., WilliamsH.J., Scott A.I., Enzymatic oxidation of 1,4- and 1,8-cineoleusing plant cultured cells of Catharanthus roseus, Lett. Org.Chem., 2004, 1, 171-172; (b) Pass G.J., McLean S., Stupans I.,Davies N., Microsomal metabolism of the terpene 1,8-cineole inthe common brushtail possum (Trichosurus vulpecula), koala(Phascolarctos cinereus), rat and human, Xenobiotica, 2001,31, 205-221; (c) Southwell I.A., Russell M.F., Maddox C.D.,Wheeler G.S., Differential metabolism of 1, 8-cineole in insects,J. Chem. Ecol., 2003, 29, 83-94; (d) Orihara Y., Furuya T.,Biotransformation of 1,8-cineole by cultured cells of Eucalyptusperriniana, Phytochemistry, 1994, 35, 641-644; (e) MiyazawaM., Kameoka H., Morinaga K., Negoro K., Mura N., Hydroxycineole:four new metabolites of 1,8-cineole in rabbits, J. Agr.Food Chem., 1989, 37, 222-226; (f) Boyle R., McLean S., DaviesN.W., Biotransformation of 1,8-cineole in the brushtail possum(Trichosurus vulpecula), Xenobiotica, 2000, 30, 915-932; (g)Rasmussen J.M., Henderson K.A., Straffon M.J., Dumsday G.J.,Coulton J., Zachariou M., Two new biocatalysts for improvedbiological oxidation of 1,8-cineole, Aust. J. Chem., 2005, 58,912-916.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_boca-2015-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.