Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Renewable chitin from marine sponge as
a thermostable biological template for
hydrothermal synthesis of hematite nanospheres
using principles of extreme biomimetics

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitin originating from marine sponges possesses
a unique nanofibrillar network structure that is the basic
element of the microtubular scaffold-like skeleton of
these organisms. Sponge chitin represents an intriguing
example of thermostability, as it is stable up to 400 °C. It
also constitutes a renewable biological source due to the
high regeneration ability of Aplysina sponges under marine
farming conditions. These properties can be exploited for
the facile and environmentally friendly creation of novel,
biocompatible organic-inorganic hybrid materials with a range of uses. Here, chitin-based scaffolds isolated from
the skeleton of marine demosponge Aplysina aerophoba
were used as a template for the in vitro formation of iron
oxide from a saturated iron(III) chloride solution, under
hydrothermal conditions (pH~1.5, 90 °C). The resultant
chitin-Fe2O3 three dimensional composites, prepared
for the first time via hydrothermal synthesis route, were
thoroughly characterized using light, fluorescence and
scanning electron microscopy; as well as with analytical
methods like Raman spectroscopy, electron diffraction and
HR-TEM. The results show that this versatile method allows
for efficient chitin mineralization with respect to hematite.
Additionally, we demonstrate that chitin nanofibers
template the nucleation of uniform Fe2O3 nanocrystals.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

accepted
17 - 12 - 2014
received
22 - 10 - 2014
online
6 - 2 - 2015

Contributors

  • Institute of Chemical Technology
    and Engineering, Faculty of Chemical Technology, Poznan
    University of Technology, Berdychowo 4 , 60965 Poznań, Poland
  • Institute of Experimental
    Physics, TU Bergakademie Freiberg, Leipziger 23, 09599 Freiberg,
    Germany
  • Institute of Materials Science, TU Bergakademie
    Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg Germany
author
  • Institut für Halbleiter- und Mikrosystemtechnik,
    Technische Universität Dresden, 01062 Dresden
  • Institute of Experimental
    Physics, TU Bergakademie Freiberg, Leipziger 23, 09599 Freiberg,
    Germany
author
  • Clinical Sensoring and Monitoring, Anesthesiology
    and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus,
    TU Dresden, Fetscher str. 74, 01307 Dresden, Germany
  • Center for Materials Genomics, Department of
    Mechanical Engineering and Materials Science, Duke University,
    27708 Durham, NC, USA
  • Institute of Marine Biology, University of Montenegro,
    85330 Kotor, Montenegro
  • Institute of Chemical Technology
    and Engineering, Faculty of Chemical Technology, Poznan
    University of Technology, Berdychowo 4 , 60965 Poznań, Poland
  • National Metallurgical Academy of Ukraine,
    Department of Materal Sciene the Name U.N. Taran-Zhovnir, Gagarina
    avenue 4, 49600Dnipropetrovsk, Ukraine
author
  • Department of Commodity and Material Sciences
    and Textile Metrology, Technical University of Lódź, Żeromskiego
    116, 90924 Lódź, Poland
  • Institute of Chemical Technology
    and Engineering, Faculty of Chemical Technology, Poznan
    University of Technology, Berdychowo 4 , 60965 Poznań, Poland

References

  • [1] Xu A.-W., Ma Y., Cölfen H., Biomimetic mineralization, J. Mater.Chem., 2007, 17, 415-449.[Crossref]
  • [2] Ehrlich H., Chitin and collagen as universal and alternativetemplates in biomineralization, Int. Geol. Rev., 2010, 52,661-699.[Crossref]
  • [3] Sanchez C., Arribart H., Guille M.M.G., Biomimetism andbioinspiration as tools for the design of innovative materialsand systems, Nat. Mater., 2005, 4, 277-288.[Crossref]
  • [4] Nudelman F., Sommerdijk N., Biomineralization as aninspiration for materials chemistry. Angew. Chemie Int. Ed.,2012, 51, 6582-6596.[Crossref]
  • [5] Wysokowski M., Motylenko M., Bazhenov V.V., Stawski D.,Petrenko I., Ehrlich A., et al., Poriferan chitin as a template forhydrothermal zirconia deposition, Front. Mater. Sci., 2013, 7,248-260.[Crossref]
  • [6] Ehrlich H., Simon P., Motylenko M., Wysokowski M.,BazhenovV.V., Galli R., et al., Extreme Biomimetics: formation ofzirconium dioxide nanophase using chitinous scaffoldsunder hydrothermal conditions, J. Mater. Chem. B., 2013, 1,5092-5099.[Crossref]
  • [7] Wysokowski M., Motylenko M., Stöcker H., Bazhenov V.V.,Langer E., Dobrowolska A., et al., An extreme biomimeticapproach: hydrothermal synthesis of β-chitin/ZnOnanostructured composites, J. Mater. Chem. B., 2013, 1,6469-6476.[Crossref]
  • [8] Wysokowski M., Piasecki A., Bazhenov V.V., Paukszta D.,Born R., Schupp P., et al., Poriferan chitin as the scaffoldfor nanosilica deposition under hydrothermal synthesisconditions, J. Chitin Chitosan Sci., 2013, 1, 26-33.
  • [9] Wysokowski M., Behm T., Born R., Bazhenov V.V., MeiβnerH., Richter G., et al., Preparation of chitin-silica compositesby in vitro silicification of two-dimensional Ianthella bastademosponge chitinous scaffolds under modified Stöberconditions, Mater. Sci. Eng. C., 2013, 33, 3935-3941.[Crossref]
  • [10] Suzuki Y., Kopp R., Kogure T., Suga A., Takai K., Tsuhida S.,et al., Sclerite formation in the hydrothermal-vent “scaly-foot”gastropod-possible control of iron sulfide biomineralizationby the animal, Earth Planet. Sci. Lett., 2006, 242, 39-50.
  • [11] Cook T.L., Stakes D.S., Biogeological mineralization in deep-seahydrothermal deposits, Science, 1995, 267, 1975-1979.
  • [12] Jun F., Jianghai L.I., Fengyou C.H.U., A study of the microbialmineralization in submarine black smoker chimneys from theOkinawa Trough, Acta. Oceanol. Sin., 2009, 28, 87-95.
  • [13] Tivey M.K., The influence of hydrothermal fluid compositionand advection rates on black smoker chimney mineralogy:Insights from modeling transport and reaction, Geochim.Cosmochim. Acta., 1995, 59, 1933-1949.[Crossref]
  • [14] Fortin D., Chatellier X. Biogenic iron oxides In: Pandalai, S.G.(Ed.), Recent Research Developments in Mineralogy, vol. 3.Research Signpost, Trivandrum, Kerala, 2003.
  • [15] Fortin D., Langley S., Formation and occurrence of biogeniciron-rich minerals. Earth-Sci. Rev., 2005, 72, 1-19.[Crossref]
  • [16] Lowenstam H.A., Goethite in radular teeth of recent marinegastropods. Science, 1962, 137, 279-280.
  • [17] Ehrlich H., Biological materials of marine origin, SpringerScience+Business Media B.V., Dordrecht, 2010.
  • [18] Gilbert P.U.P.A., Abrecht M., Frazer B.H., The organic-mineralinterface in biominerals. Rev. Mineral. Geochem. 2005, 59,157-185.[Crossref]
  • [19] Cabral A.R., Koglin N., Seabra Gomes Jr A.A., LehamnnB., Xenotime-hematite aggregates on opaline filaments:evidence for biomineralization in weathered siliciclastic rocks,Capanema, Quadrilatero Ferrifero of Minas Gerais, Brazil. Int. J.Earth Sci., 2012, 101, 377-383.[Crossref]
  • [20] Hawkes J.A., Connelly D.P., Gledhill M., Achtenberg E.P., Thestabilization and transportation of dissolved iron from hightemperature hydrothermal vents. Earth Planet. Sci. Lett., 2013,375, 280-290.
  • [21] Kilias S.P., Nomikou P., Papanikolaou D., PolymenakouP.N., Godelitsas A., Argyraki A., et al., New insights intohydrothermal vent processes in the unique shallow-submarinearc-volcano, Kolumbo (Santorini), Greece., Sci. Rep., 2013, 2,2421.
  • [22] Yücel M., Gartman A., Chan C.S., Luther G.W., Hydrothermalvents as a kinetically stable source of iron-sulphide-bearingnanoparticles to the ocean. Nat. Geosci., 2011, 4, 367-371.[Crossref]
  • [23] Kennedy C.B., Scott S.D., Ferris F.G., Hydrothermal phasestabilization of 2 line ferrihydrite by bacteria. Chem. Geol.2004, 212, 269-277.
  • [24] Li M., Toner B.M., Baker B.J., Breier J.A., Sheik C.S., Dick G.J.,Microbal iron uptake as a mechanism for dispersing iron fromdeep-sea hydrothermal vents. Nat. Comm., 2014, 5, 3192.
  • [25] Zvarec O., Purushotham S., Masic A., Ramanujan R.V., MiserezA., Catechol-functionalized chitiosan/iron oxide nanopatriclecomposite inspired by mussel thread coating and squid beakinterfacial chemistry. Langmuir, 2013, 29, 10899-10906.[Crossref]
  • [26] Ehrlich H., Ilan M., Maldonado M., Muricy G., Bavestrelllo G.,Kljajic Z., et al., Three-dimensional chitin-based scaffolds fromVerongida sponges (Demospongiae: Porifera). Part I. Isolationand identification of chitin. Int. J. Bol. Macromol. 2010, 47,132-140.[Crossref]
  • [27] Wysokowski M., Bazhenov V.V., Tsurkan M.V., Galli R., StellingA.L., Stöcker H., et al., Isolation and identification of chitinin three-dimensional skeleton of Aplysina fistularis marinesponge. Int. J. Biol. Macromol. 2013, 62, 94-100.[Crossref]
  • [28] Cruz-Barraza J.A., Carballo J.L., Rocha-Olivares A., Ehrlich H.,Hog. M., Integrative taxonomy and molecular phylogeny ofgenus Aplysina (Demospongiae: Verongida) from MexicanPacific, PLoS One., 2012, 7, e42049.
  • [29] Michailovski A., Patzke G.R., Hydrothermal synthesis ofmolybdenium oxide based materials: strategy ans structuralchemistry. Chem. Eur. J., 2006, 12, 9122-9134.[Crossref]
  • [30] Geisberger G., Paulus S., Carraro M., Bonchio M., PatzkeG.R., Synthesis, characterization and cytotoxicity of polyoxometalate/carboxymethyl chitosan nanocomposites, Chem. Eur.J. 2011, 17, 4619-4625.[Crossref]
  • [31] Rabenau B.A., The role of hydrothermal synthesis inpreparative chemistry, Angew. Chemie. Int. Ed., 1985, 24,1026-1040.[Crossref]
  • [32] Namratha K., Byrappa K., Novel solution routes of synthesis ofmetal oxide and hybrid metal oxide nanocrystals, Prog. Cryst.Growth Charact. Mater., 2012, 58, 14-42.[Crossref]
  • [33] Riman R., Suchanek W., Lencka M., Hydrothermal crystallizationof ceramics, Ann. Chim. Sci. Des. Matériaux., 2002, 27,15-36.[Crossref]
  • [34] Kaszewski J., Yatsunenko S., Pełech I., Mijowska E., NarkiewiczU., Godlewski M., High pressure synthesis versus calcination– different approaches to crystallization of zirconium dioxide,Polish. J. Chem. Technol., 2014, 16, 99-105.
  • [35] Anitha A., Sowmya S., Sundheesh Kumar P.T., Deepthi S.,Chennazhi K.P., Ehrlich H., et al., Chitin and chitosan inselected biomedical applications. Prog. Polymer Sci., 2014, 39,1644-1667.[Crossref]
  • [36] Ehrlich H., Steck E., Ilan M., Maldonado M., Muricy G.,Bavestrello G., et al., Three-dimensional chitin-based scaffoldsfrom Verongida sponges (Demospongiae: Porifera). Part II:Biomimetic potential and applications, Int. J. Biol. Macromol.2010, 47, 141–145.[Crossref]
  • [37] Konhauser K.O., Jones B., Microbal silicification – bacteria(or passive), In: Reitner J., Thiel V. (Eds.), Encyclopedia ofGeobiology, Springer, Dordecht, 2011
  • [38] Ouyang J., Pei J., Kuang Q., Xie Z., Zheng L., Supersaturationcontrolledshape evolution of α-Fe2O3 nanocrystals and theirfacet dependent catalytic and sensing properties. ACS Appl.Mater. Interfaces, 2014, 6, 12505-12514.[Crossref]
  • [39] Elorza M.V., Rico H., Sentandreu R., Calcofluor White altersthe assembly of chitin fibrils in Saccharomyces cerevisiaeand Candida albicans cells, J. Gen. Microbiol., 1983, 129,1577-1582.
  • [40] Herth W., Schnepf E., The fluorochrome, CalcofluorWhite, binds oriented to structural polysaccharide fibrils,Protoplasma, 1980, 105, 129-133.
  • [41] Ehrlich H., Krautter M., Hanke T., Simon P., Knieb C.,Heinemann S., et al., First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges. (Hexactinellida:Porifera), J. Exp. Zool. Part B., 2007, 308B, 473-483.
  • [42] Ehrlich H., Maldonado M., Spindler K., Eckert C., Hanke T., BornR., et al., First evidence of chitin as a component of the skeletalfibers of marine sponges. Part I. Verongidae (Demospongia:Porifera), J. Exp. Zool. Part B., 2007, 356, 347–356.
  • [43] Wysokowski M., Zatoń M., Bazhenov V.V., Behm T., Ehrlich A.,Stelling A.L., et al., Identification of chitin in 200-million-yearoldgastropod egg capsules, Paleobiology, 2014, 40, 529–540.[Crossref]
  • [44] Ehrlich H., Rigby J.K., Botting J.P., Tsurkan M., Werner C.,Schwille P., et al., Discovery of 505-million-year old chitin in thebasal demosponge Vauxia gracilenta, Sci. Rep. 2013, 3, 3497.
  • [45] Ehrlich H., Kaluzhnaya O.V., Brunner E., Tsurkan M.V.,Ereskovsky A., Ilan M., et al., Identification and first insightsinto the structure and biosynthesis of chitin from thefreshwater sponge Spongilla lacustris. J. Struct. Biol., 2013,183, 474-483.
  • [46] Ehrlich H., Kaluzhnaya O.V., Tsurkan M.V., Ereskovsky A.,Tabachnick K.R., Ilan M., et al., First report on chitinousholdfast in sponges (Porifera), Proc. R. Soc. B, 2013, 280,20130339.
  • [47] Niu L.-n., Jiao K., Qi Y.-p., Yiu C.K.Y., Ryou H., Arola D.D., et al.,Infiltration of silica inside fibrillar collagen, Angew. Chem. Int.Ed., 2011, 50, 11688-11691.[Crossref]
  • [48] Zhou B., Niu L.-n., Shi W., Zhang W., Arola D.D., Breschi L., etal., Adopting the principles of collagen biomineralization forintrafibrillar infiltration of yttria-stabilized zirconia into threedimensionalcollagen scaffolds, Adv. Funct. Mater., 2013, 24,1895-1903.
  • [49] Munro N.H., Green D.W., Dangerfield A., McGrath K.M.,Biomimetic mineralisation of polymeric scaffolds usingcombined soaking and Kitano approach, Dalton Trans., 2011,40, 9259-9268.
  • [50] de Faria D.L.A., Lopes F.N., Heated goethite and naturalhematite: Can Raman spectroscopy be used to differentiatethem?, Vib. Spectrosc., 2007, 45, 117-121.
  • [51] Ma M.-G., Zhu J.-F., Li S.-M., Jia N., Sun R.-C. Nanocompositesof cellulose/iron oxide: influence of synthesis conditions ontheir morphological behawior and thermal stability. Mater. Sci.Eng. C, 2012, 1511-1517.[Crossref]
  • [52] Caudron E., Tfayli A., Monnier C., Manfait M., Prognon P.,Pradeau D., Identification of hematite particles in sealed glasscontainers for pharmaceutical uses by Raman microspectroscopy,J. Pharm. Biomed. Anal., 2011, 54, 866-868.[Crossref]
  • [53] Froment F., Tournié A., Colomban P., Raman identification ofnatural red to yellow pigments: ochre and iron-containing ores.J. Raman Spectrosc., 2008, 39, 560-568.[Crossref]
  • [54] Ogasawara W., Shenton W., Davis S.A., Mann S., Templatemineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix, Chem. Mater. 2011,23, 2973-2978.
  • [55] Spinde K., Kammer M., Freyer K., Ehrlich H., Vournakis J.N.,Brunner E., Biomimetic silicification of fibrous chitin fromdiatoms, Chem. Mater., 2011, 23, 2973-2978.[Crossref]
  • [56] Fang X.-L., Chen C., Jin M.-S., Kuang Q., Xie Z.-X., Xie S.-Y. etal., Single-crystal-like hematite colloidal nanocrystal clusters:synthesis and applications in gas sensors, photocatalysis andwater treatment, J. Mater. Chem., 2009, 19,6154-6160.[Crossref]
  • [57] Van T.-K., Cha H.G., Nguyen C.K., Kim S.-W., Jung M.-H., KangY.S., Nanocystals of hematite with unconventional shapetruncatedhexagonal bipyramid and its optical and magneticproperties, Cryst. Growth Des., 2012, 12, 862-868.[Crossref]
  • [58] Cornell R., Schwertmann U., The iron oxides – structure,properties, occurences and uses. 2nd ed., Wiley-VCH Verlag,Weinheim, 2003.
  • [59] Yue Z.-G., Wei W., You Z.-X., Yang Q.-Z., Yue H., et al., Iron oxidenanotubes for magnetically guided delivery and pH-activatedrelease of insoluble anticancer drugs, Adv. Funct. Mater., 2011,21, 3446-3454.[Crossref]
  • [60] Li J., He Y., Sun W., Luo Y., Cai H., Pan Y., Shen M., Xia J., ShiX., Hyaluronic acid-modified hydrothermally synthesizediron oxide nanoparticles for targeted tumor MR imaging.Biomaterials, 2014, 35, 3666-3677.[Crossref]
  • [61] Gong J., Wang L., Zhao K., Song D., One-step fabricationof chitosan–hematite nanotubes composite film and itsbiosensing for hydrogen peroxide, Electrochem. Commun.,2008, 10, 123-126.[Crossref]
  • [62] Lu X., Zeng Y., Yu M., Zhai T., Liang C., Xie S., et al., Oxygendeficienthematite nanorods as high-performance and novelnegative electrodes for flexible asymmetric supercapacitors,Adv. Mater., 2014, 26, 3148-3155.[Crossref]
  • [63] Ren T., He P., Niu W., Wu Y., Ai L., Gou X., Synthesis of α-Fe2O3nanofibers for applications in removal and recovery of Cr(VI)from wastewater. Environ. Sci. Pollut. Res. 2013, 20, 155-162.[Crossref]
  • [64] Pehlivan E., Tran H.T., Ouerdraogo W.K., Schmidt C., ZachmannD., Bahadir M., Sugarcane bagasse treated with hydrous ferricoxide as a potential adsorbent for the removal of As(V) fromaqueous solutions. Food Chem. 2013, 133-138.[Crossref]
  • [65] Huang C.L., Zhang H.Y., Sun Z.Y., Liu Z.M., Chitosan-mediatedsynthesis of mesoporous α-Fe2O3 nanoparticles and theirapplications in catalyzing selective oxidation of cyclohexane,Sci. China Chem., 2010, 53, 1502-1508.[Crossref]
  • [66] Yu J., Yu X., Huang B., Zhang X., Dai Y., Hydrothermal synthesisad visible-light photocatalytic activity of novel cage-like ferricoxide hollow spheres, Cryst. Growth. Des.,2009, 9, 1474-1480.[Crossref]
  • [67] Fei X., Shao Z., Chen X., Hematite nanostructures by a silkfibroin-assisted hydrothermal method, J. Mater. Chem. B.,2013, 1, 213-220.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_bima-2015-0001
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.