Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2006 | 4 | 1 | 81-91

Article title

Silica hybrid nanocomposites

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work we present experimental results about the formation, properties and structure of sol - gel silica based biocomposite containing Calcium alginate as an organic compound. Two different types of silicon precursors have been used in the synthesis: tetramethylortosilicate (TMOS) and ethyltrimethoxysilane (ETMS). The samples have been prepared at room temperature. The hybrids have been synthesized by replacing different quantitis of the inorganic precursor with alginate. The structure of the obtained hybrid materials has been studied by XRD, IR Spectroscopy, EDS, BET and AFM. The results proved that all samples are amorphous possessing a surface area from 70 to 290 m2/g. It has also been established by FT IR spectra that the hybrids containing TMOS display Van der Walls and Hydrogen bonding or electrostatic interactions between the organic and inorganic components. Strong chemical bonds between the inorganic and organic components in the samples with ETMS are present. A self-organized nanostructure has been observed by AFM. In the obtained hybrids the nanobuilding blocks average in size at about 8–14 nm for the particles.

Publisher

Journal

Year

Volume

4

Issue

1

Pages

81-91

Physical description

Dates

published
1 - 3 - 2006
online
1 - 3 - 2006

Contributors

  • Department of Silicate Technology, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
  • Department of Silicate Technology, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
  • Department of Silicate Technology, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
  • Department of Ceremics and Glass Engineering, CICECO, University of Aveiro, Aveiro, Portugal
  • Department of Ceremics and Glass Engineering, CICECO, University of Aveiro, Aveiro, Portugal

References

  • [1] J. Livage, T. Coradin, and, C. Roux: “Encapsulation of biomolecules in silica gels”, J. Phys.: Condensation Matterials, Vol. 13, (2001), pp. 673–691. http://dx.doi.org/10.1088/0953-8984/13/33/202[Crossref]
  • [2] D.F. Schmidt: Polysiloxane/layered silicate nanocomposite: synthesis, characterization and properties, Cornell University, 2003.
  • [3] K.H. Haas and K. Rose: “Hybrid inorganic/organic polymers with nanoscale building blocks: precursor, processing, properties and application”, Rev. Adv. Mat. Sci., Vol. 5, (2003), pp. 47–52.
  • [4] V. Castelvetro and C. Vita: “Nanostructured hybrid materials from aqueous polymer dispersions”, Adv. Coll. Interface Sci., Vol. 108-109, (2004), pp. 167–185. http://dx.doi.org/10.1016/j.cis.2003.10.017[Crossref]
  • [5] R. Ceccato, S. Dire and L. Lutterotti: “Pyrolysis pathway of sol-gel derived organic/inorganic hybrid nanocomposites”, J. Non-Crystalline Solids, Vol. 322, (2003), pp. 22–28. http://dx.doi.org/10.1016/S0022-3093(03)00166-2[Crossref]
  • [6] W. Cuiming, X. Tongwen and Y. Weihua: “Fundamental studies of a new hybrid (inorganic-organic) positively charged membrane: membrane preparation and characterizations”, J. Membrane Sci., Vol. 216, (2003), pp. 269–278. http://dx.doi.org/10.1016/S0376-7388(03)00082-6[Crossref]
  • [7] Y. Chevalier, A.C. Grillet, M.I. Rahmi, C.L., M. Masure, P. Hemery and F. Babonneau: “The structure of porous silica-polysiloxane hybrid materials”, Mat. Sci., Engin. C, Vol. 21, (2002), pp. 143–150. http://dx.doi.org/10.1016/S0928-4931(02)00095-4[Crossref]
  • [8] C. Cornelius, C. Hibshman and E. Marand: “Hybrid organic inorganic membrane”, Separation and purification technology, Vol. 25, (2001), pp. 181–193. http://dx.doi.org/10.1016/S1383-5866(01)00102-2[Crossref]
  • [9] H. Fan, S. Reed, T. Baer, R. Schung, G.P. Lopez and C.J. Brinker: “Hierarchicaly structured functional porous silica and composite produced by evaporation-induced self assembly”, Micropor. Mesopor. Mat., Vol. 44-45, (2001), pp. 625–637. http://dx.doi.org/10.1016/S1387-1811(01)00243-8[Crossref]
  • [10] N. Sgarbi, D. Pisignano, F. Di Benedeto, G. Gigli, R. Cingolani and R. Rinaldi: “Selfassembled extracelular matrix protein networks by microcontact printing”, Biomaterials, Vol. 25, (2004), pp. 1349–1353. http://dx.doi.org/10.1016/j.biomaterials.2003.08.017[Crossref]
  • [11] N. Faucheux, R. Schweiss, K. Lutzov, C. Werner and T. Groth: “Self-assembled monolayer with different terminating groups as model substrate for cell adhesion studies”, Biomaterials, Vol. 25, (2004), pp. 2721–2730. http://dx.doi.org/10.1016/j.biomaterials.2003.09.069[Crossref]
  • [12] S.H. Chen and S. Choi: “Mesoscopic scale structures in self organized surfactant solution determined by small angle neutron scattering”, Supermolecul. Sci., Vol. 5, (1998), pp. 197–206. http://dx.doi.org/10.1016/S0968-5677(98)80001-1[Crossref]
  • [13] T. Coradin and J. Livage: “Synthesis and characterization of alginate/silica biocomposites”, J. Sol-Gel Sci. Technol., Vol. 26, (2003), pp. 1165–1168. http://dx.doi.org/10.1023/A:1020787514512[Crossref]
  • [14] G. Kickelbick: “Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale”, Progress Polymer Sci., Vol. 28, (2003), pp. 83–114. http://dx.doi.org/10.1016/S0079-6700(02)00019-9[Crossref]
  • [15] T. Liu, C. Burger and B. Chu: “Nanofabrication in polymer matrices”, Progress Polymer Sci., Vol. 28, (2003), pp. 5–26. http://dx.doi.org/10.1016/S0079-6700(02)00077-1[Crossref]
  • [16] J.M. Xue and M. Shi: “PLGA/mesoporous silica hybrid structure for controlled drug release”, J. Controll. Release, Vol. 98, (2004), pp. 209–217. http://dx.doi.org/10.1016/j.jconrel.2004.04.023[Crossref]
  • [17] I. Grod, W. Mista, W. Strek, E. Bukowska, K. Hermanowicz and K. Maruszewski: “Synthesis and properties of an inorganic-organic hybrid preparedby the sol-gel method”, Optical Mat., Vol. 26, (2004), pp. 207–211. http://dx.doi.org/10.1016/j.optmat.2003.11.022[Crossref]
  • [18] A.P.V. Pereira, W.L. Vasconcelos and R.L. Orefice: “Novel multicomponent silicate/poly (vinyl alcohol) hybrids with controlled reactivity”, J. Non-Crystalline Sol., Vol. 273, (2000), pp. 180–185. http://dx.doi.org/10.1016/S0022-3093(00)00166-6[Crossref]
  • [19] H. Chen, M.A. Brook and H. Sheardown: “Silicone elastomers for reduced protein adsorption”, Biomaterials, Vol. 25, (2004), pp. 2273–2282. http://dx.doi.org/10.1016/j.biomaterials.2003.09.023[Crossref]
  • [20] S. Fennouh: “Encapsulation of Bacteria in Silica Gels”, Solid State Chem. Cryst. Chem., Vol. 2, (1999), pp. 625–630.
  • [21] D. Avnir, S. Braun, O. Lev and M. Ottolenghli: “Enzymes and Other Proteins Entrapped in Sol-Gel Materials”, Chem. Mat., Vol. 6, (1994), pp. 1605–1614. http://dx.doi.org/10.1021/cm00046a008[Crossref]
  • [22] Y.A. Shchipunov, T. Karpenko, I. Bakunina, Y. Burtseva and T. Zvyagintseva: “A new precursor for the immobilization of enzyme inside sol-gel derived hybrid silica nanocomposite containing polysaccharides”, J. Biochem. Biophys. Methods, Vol. 58, (2004), pp. 25–38. http://dx.doi.org/10.1016/S0165-022X(03)00108-8[Crossref]
  • [23] E.J. Pope: “Gel encapsulated microorganisms: “saccharomyces cerevisiave”-silica gel biocomposites”, J. Sol-Gel Sci. Technol., Vol. 4, (1999), pp. 225–229. http://dx.doi.org/10.1007/BF00488377[Crossref]
  • [24] J.-P. Chen and Y.-N. Hwang: “Polyvinyl formal resin plates impregnated with lipase-entrapped sol-gel polymer for flavor ester synthesis”, Enzyme Microbial Technol., Vol. 33, (2003), pp. 513–519. http://dx.doi.org/10.1016/S0141-0229(03)00157-1[Crossref]
  • [25] J. Livage, T. Coradin and C. Roux: “Encapsulation of biomolecules in silica gels”, J. Phys.: Condens Matter, Vol. 13, (2001), pp. 673–691. http://dx.doi.org/10.1088/0953-8984/13/33/202[Crossref]
  • [26] G. Kuncova, O. Podrazky, S. Ripp, G. Trogl, G.S. Saylar, K. Demnerova and R. Vankova: “Monitoring of the Viability of Cells Immobilized by Sol-Gel Process”, J. Sol-Gel Sci. Technol., Vol. 31, (2004), pp. 335–342. http://dx.doi.org/10.1023/B:JSST.0000048013.64235.c8[Crossref]
  • [27] A. Siouffi: “Silica gel-based monoliths prepared by the sol-gel method: facts and figures”, J. Chromatography A, Vol. 1000, (2003), pp. 801–818. http://dx.doi.org/10.1016/S0021-9673(03)00510-7[Crossref]
  • [28] S. Sakai, T. Ono, H. Ijima and K. Kawakami: “Permeability of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane templated by calcium-alginate gel”, J. Membrane Sci., Vol. 205, (2002), pp. 183–189. http://dx.doi.org/10.1016/S0376-7388(02)00093-5[Crossref]
  • [29] X. Liu, L. Qian, T. Shu and Z. Tong: “Rheology characterization of sol-gel transition in aqueous alginate solutions induced by calcium cations through in situ release”, Polymer, Vol. 44, (2003), pp. 407–412. http://dx.doi.org/10.1016/S0032-3861(02)00771-1[Crossref]
  • [30] S. Sakai, T. Ono, H. Ijima and K. Kawakami: “Behavior of enclosed sol-and gel-alginates in vivo”, Biochem. Engin. J., Vol. 22, (2004), pp. 19–24. http://dx.doi.org/10.1016/j.bej.2004.07.010[Crossref]
  • [31] T. Coradin and J. Livage: “Mesoporous alginate/silica biocomposites for enzyme immobilization”, C. R. Chimie, Vol. 6, (2003), pp. 147–152.
  • [32] K. Draget, K. Skjak-Braek and O. Smidsrod: “Alginate based new materials”, Internat. J. Biol. Macromol., Vol. 21, (1997), pp. 47–55. http://dx.doi.org/10.1016/S0141-8130(97)00040-8[Crossref]
  • [33] B. Samuneva, E. Kadiyska, P. Djambaski, E. Dobreva, I. Bojadjieva, L. Kabaivanova, I.M.M. Salvado and M.H.V. Fernandes: “Sol-gel Synthesis of Glassy Hybrid Matrices for Cell Immobilization”, Glastech. Ber. Glass Sci. Technol., Vol. 75 (C2), (2002), pp. 434–437.
  • [34] E. Kadiyska, L. Kabaivanova, B. Samuneva and E. Dobreva: “Inorganic-organic matrices for bacterial cell immobilization”, In: Third European Conference on Advanced Materials and Technology, CD-ROM: 7, Bucharest, 2002.
  • [35] G. Chernev, B. Samuneva, P. Djambaski, L. Kabaivanova, I.M.M. Salvado and M.H.V. Fernandes: “Silica nanocomposite containing polyacylamide gel”, Glass Sci., Technol., (2005), (in press).
  • [36] E. Kadiyska, L. Kabaivanova, B. Samuneva and E. Dobreva: “Influence of the quantity of organics in SiO2-gel matrices on the nitrilase activity of the immobilized bacterial cells”, In: Third European Conference on Advanced Materials and Technology, CD-ROM: 18, Bucharest, 2002.
  • [37] E. Kadiyska, L. Kabaivanova, B. Samuneva P. Djambaski, G. Chernev and E. Dobreva: “Structure of nanocomposite hybrid materials for cell immobilization”, In: E. Balabanova and I. Dragieva (Eds): Nanoscience and Nanotechnology, Heron Press, Sofia, 2003, pp. 213–216.
  • [38] G. Chernev, B. Samuneva, P. Djambaski, Y. Tzvetkova, I.M.M. Salvado and M.H.V. Fernandes: “Silica nanocomposites hybrid containing agar-agar”, In: E. Balabanova and I. Dragieva (Eds): Nanoscience and Nanotechnology, Heron Press, Sofia, 2003, pp. 94–97.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1007_s11532-005-0006-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.