Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The defect build-up, structure recovery and lattice location of transition metals in ion bombarded and thermally annealed ZnO and GaN single crystals were studied by channeled Rutherford backscattering spectrometry and channeled particle-induced X-ray emission measurements using 1.57 MeV ⁴He ions. Ion implantation to a fluence of 1.2×10¹⁶ ions/cm² was performed using 120 keV Co and 120 keV Mn ions. Thermal annealing was performed at 800°C in argon flow. Damage distributions were determined using the Monte Carlo McChasy simulation code. The simulations of channeled Rutherford backscattering spectra reveal that the ion implantation leads to formation of two types of defect structures in ZnO and GaN such as point and extended defects, such as dislocations. The concentrations of both types of defects are at a comparable level in both structures and for both implanted ions. Differences between both implantations appear after thermal annealing where the Mn-doped ZnO reveals much better transition metals substitution and recovery effect.
EN
The technology of neutron transmutation doping of silicon wafers in MARIA nuclear research reactor is described. The studies of the radiation defects performed with positron annihilation confirmed that divacancies dominate in the irradiated material. Thermal treatment of irradiated silicon at 700-1000°C produces void-phosphorus complexes and void aggregates. The resistivity of the samples produced by neutron transmutation doping was found to be uniform within 2.5% limits. The severe reduction of the minority carrier lifetime in irradiated samples was confirmed.
EN
Enrichment of AISI 316L steel surface layers with rare earth elements was carried out using two methods with ion beam applying. The first one was the ion implantation with the doses in the range of 1 × 10^{15} cm^{-2} up to 5 × 10^{17} cm^{-2} where mishmetal (Ce+La) was used as the ion source. The second method was the high intensity pulsed plasma beams. The plasma pulses contained both ions/atoms of Ce+La from the electrodes material (mishmetal). The pulse energy densities (3 J/cm^2) were sufficient to melt the near surface layer of the steel and introduce those elements into the surface layer. The aim of this work was to investigate the changes of stainless steel surface properties (morphology, rare earth elements concentration, presence of identified phases) after the rare earth elements addition with or without melting. Scanning electron microscopy, energy dispersion spectroscopy, and X-ray diffraction analysis were used for initial and modified surface characterisation. Grazing-incidence X-ray diffraction shows differences in the identified phase presence in the modified surface layer connected with the modification method.
EN
It is well documented that the high oxygen affinity elements such as Y, Ce, La, Er and other rare earth elements added to steel in small amounts can improve their high temperature oxidation resistance. Rare earth elements can be either alloyed during the steel making process or introduced through surface treatment techniques. Improvement of high temperature oxidation resistance of AISI 316 L steel by incorporation Ce and La elements into its near surface region using high intensity pulsed plasma beams in so-called deposition by the pulse erosion mode was investigated in the present work. The samples were irradiated with 3 short (μs scale) intense (energy density 3 J/cm^2) plasma pulses. Heating and cooling processes occur under non-equilibrium conditions. In all samples the near surface layer of the thickness in μm range was melted and simultaneously doped with cerium and lanthanum. The modified samples were oxidized at 1000°C for 100 h in air. The obtained effects were: oxide scales formed on the treated samples were more fine-grained, compact and adhering better that those formed on the un-treated samples.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.