Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  zeaxanthin epoxidase
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2018
|
vol. 65
|
issue 3
431-435
EN
Zeaxanthin epoxidase (ZEP) plays an important role in xanthophyll cycle which is a process closely related to photosynthesis. However, an impact of ZEP on low-light stress has not been studied. In this study, the functions of an alfalfa (Medicago sativa) zeaxanthin epoxidase gene, MsZEP, in response to low-light stress were investigated by heterologous expression in tobacco (Nicotiana tabacum). Under normal light conditions, the measured parameters were not significantly different between transgenic and wild-type (WT) plants except for non-photochemical quenching value and chlorophyll a content. However, the differences were detected under low-light stress. We found that MsZEP-overexpression tobacco grew faster than WT (p≤0.05). The leaf fresh weight and leaf area of transgenic plants were significantly higher, and the number of stomata was greater in MsZEP-overexpression tobacco. As for photosynthetic characteristics, quantum yield of PSII (ΦPSII) and maximal photochemical efficiency of PSII (Fv/Fm) were not significantly different, whereas non-photochemical quenching (NPQ), net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of MsZEP-overexpression tobacco were significantly higher than in WT plants. However, no significant difference was detected between the two types of tobacco in chlorophyll and carotenoids content. In conclusion, MsZEP can improve the ability of tobacco to withstand low-light stress, which might be due to its stronger photosynthetic activity and the improvement of stomatal density under low light.
|
2008
|
vol. 55
|
issue 1
183-190
EN
In the present study, xanthophyll composition of eight parasitic Cuscuta species under different light conditions was investigated. Neoxanthin was not detected in four of the eight species examined, while in others it occurred at the level of several percent of total xanthophylls. In C. gronovii and C. lupuliformis it was additionally found that the neoxanthin content was considerably stimulated by strong light. In dark-adapted plants, lutein epoxide level amounted to 10-22% of total xanthophylls in only three species, the highest being for C. lupuliformis, while in others it was below 3%, indicating that the lutein epoxide cycle is limited to only certain Cuscuta species. The obtained data also indicate that the presence of the lutein epoxide cycle and of neoxanthin is independent and variable among the Cuscuta species. The xanthophyll cycle carotenoids violaxanthin, antheraxanthin and zeaxanthin were identified in all the examined species and occurred at the level found in other higher plants. The xanthophyll and lutein epoxide cycle pigments showed typical response to high light stress. The obtained results also suggest that the ability of higher plants to synthesize lutein epoxide probably does not depend on the substrate specificity of zeaxanthin epoxidase but on the availability of lutein for the enzyme.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.