Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  umbilical cord vein
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2002
|
vol. 49
|
issue 2
451-458
EN
The state of the vascular system of the mother and of placenta is known to exert a great influence on intrauterinal development of the fetus. Pre-eclampsia is the most common pathological syndrome connected with pregnancy. Since collagen is one of the main constituents of the vessel wall a comparison was made with collagen content and its molecular polymorphism in umbilical cord veins of newborns from healthy and pre-eclamptic mothers. It was found that umbilical cord veins of newborns from mothers with pre-eclampsia contained 18% less collagen than those of the newborns from normal pregnancies. This decrease was accompanied by a slight decrease of collagen solubility, but all its types (I, III, IV, V and VI) were present. However, the umbilical vein wall of newborns from mothers with pre-eclampsia contained relatively less of type I and more of type III collagen than the normal umbilical cord. These differences may be connected with a disturbance of blood flow in fetus of a woman with pre-eclampsia.
|
2012
|
vol. 59
|
issue 4
679-684
EN
The extracellular matrix components are differentially distributed among various structures of the umbilical cord. Wharton's jelly is especially rich in collagens and growth factors. Cathepsin B is a major cysteine protease involved in collagen degradation, as well as in the activation of precursor forms of other collagenolytic enzymes and growth factors. We assessed the activity and expression of cathepsin B in the umbilical cord arteries, veins and Wharton's jelly. Extracts of separated umbilical cord components were subjected to an activity assay with the use of specific fluorogenic substrate. The expression of cathepsin B protein was qualitatively evaluated by Western immunoblotting and quantitatively determined with an immunoenzymatic method. The total cathepsin B activity and content calculated per gram of DNA were higher in Wharton's jelly than in the umbilical cord vessels, and the latter parameter was the lowest in the umbilical cord arteries. Moreover, the expression and the activity of latent cathepsin B (following activation by pepsin digestion) calculated per gram of DNA were the highest in Wharton's jelly and the lowest in the umbilical cord arteries. High expression and activity of latent, pepsin-activatable cathepsin B related to DNA content in Wharton's jelly seem to reflect the stimulation of its cells by high amounts of collagen I and growth factors.
EN
The extracellular matrix components show specific distribution patterns within various structures of the umbilical cord, among which Wharton's jelly is especially collagen-rich tissue. Cathepsin L is a potent cysteine protease engaged in degradation of extracellular matrix proteins, including collagens. We evaluated the activity and expression of cathepsin L, and the inhibitory effect of cysteine protease inhibitors in the umbilical cord arteries, vein and Wharton's jelly. Cathepsin L activity and anti-papain inhibitory effect of cysteine protease inhibitors were quantified in extracts of separated umbilical cord tissues using fluorogenic substrates. The results were calculated per DNA content. The enzyme expression was assessed by Western immunoblotting. The active cathepsin L activity (without activation by pepsin digestion), its percentage in the total activity (after pepsin activation), and the expression of the mature single-chain enzyme were the lowest in the umbilical cord arteries and the highest in Wharton's jelly. The effect of cysteine protease inhibitors showed similar distribution as in the case of the active enzyme, being the highest in Wharton's jelly. Distribution of the activity and expression of mature cathepsin L within the umbilical cord probably results from distinctions in the proenzyme activation process. Differences in the action of cysteine protease inhibitors can partly restrict divergences in the enzyme activity that could reflect its expression alone. Differential enzyme action seems to contribute to tissue-specific collagen turnover within the umbilical cord cells, especially those of Wharton's jelly.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.