Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  surface morphology
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Polyethylene terephthalate (PET) foils have been exposed to oxygen plasma and its afterglow in order to reveal compositional and structural modifications of the surface layer. Oxygen plasma was created by electrode-less RF discharge in a glass chamber so the O-atom density was close to 1022 m-3 although the density of charged particles was only about 1 × 1016 m-3. Long-living reactive particles created in plasma were leaked into the afterglow chamber using a two-stage rotary pump of pumping speed 4.4 × 10-3 m3 s-1. The density of O-atoms in the afterglow as measured with a catalytic probe was 3 × 1021 m-3, while the density of reactive oxygen molecules was estimated theoretically. The functionalization was accomplished even after a brief exposure to either plasma or afterglow since all samples were saturated with oxygen-rich functional groups as revealed by XPS. The water contact angle measurements, however, showed that only plasma treatment allowed for super-hydrophilicity, explained by rich surface morphology as detected by AFM. The differences in morphological properties between plasma and afterglow treated samples were explained by different interaction mechanisms between low and high energy particles impinging the polymer surface.
EN
Studies were conducted on the modification of titanium white surface using selected silane coupling agents. The effect of the concentration of the organic coupling agents was examined (0.5; 1 or 3 weight parts per 100 weight parts of TYTANPOL R-003, TYTANPOL R-211 or TYTANPOL R-213 preparation of titanium white). The dispersive properties were determined by an estimation of the particle size distribution curves and of the polydispersity index. Moreover, microscopic observations were conducted permitting to evaluate the surface morphology of the modified TiO2 particles. The profiles of sedimentation in water were also determined for the titanium whites and the BET specific surface areas were determined. Selected samples of the modified and unmodified titanium whites were subjected to elemental analysis.
EN
The physicochemical and dispersive characterizations were conducted on the selected commercial titanium dioxides produced by, Z. Ch. POLICE, S. A. The dispersive properties were defined in detail by an analysis of particle size distribution and polydispersity index. Moreover, the microscope studies were executed to evaluate the surface morphology of the studied TiO2 forms. The profiles of titanium dioxides sedimentation in water were determined and the specific surface areas were defined by the BET method.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.