Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  stretching sheet
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2010
|
vol. 8
|
issue 3
516-518
EN
In this reply to comment on ”Series solution of hydromagnetic flow and heat transfer with Hall effect in a second grade fluid over a stretching sheet” by R. A. Van Gorder and K. Vajravelu manuscript [R. A. Van Gorder, K. Vajravelu, Cent. Eur. J. Phys., DOI:10. 2478/s11534-009-0145-2], we once again claim that the governing similarity equations of Vajravelu and Roper [K. Vajravelu, T. Roper, Int. J. Nonlin. Mech. 34, 1031 (1999)] are incorrect and our claim in [M. Ayub, H. Zaman, M. Ahmad, Cent. Eur. J. Phys. 8, 135 (2010)] is true. For the literature providing justification regarding this issue is discussed in detail.
Open Physics
|
2010
|
vol. 8
|
issue 3
514-515
EN
In a recently accepted paper of M. Ayub, H. Zaman and M. Ahmad [Cent. Eur. J. Phys. 8, 135 (2010)] the authors claim that the governing similarity equations of Vajravelu and Roper [Int. J. Nonlin. Mech. 34, 1031 (1999)] are incorrect; without any justification, the authors Ayub et al. simply mention that the equation is “found to be incorrect in the literature” (though no reference supporting this assertion is provided in the citations). We show that this assertion of Ayub et al. is wrong, and that the similarity equation of Vajravelu and Roper is indeed correct.
Open Physics
|
2011
|
vol. 9
|
issue 1
176-182
EN
In this paper, the steady two-dimensional stagnation-point flow of a viscoelastic Walters’ B’ fluid over a stretching surface is examined. It is assumed that the fluid impinges on the wall obliquely. Using similarity variables, the governing partial differential equations are transformed into a set of two non-dimensional ordinary differential equations. These equations are then solved numerically using the shooting method with a finite-difference technique.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.