Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 14

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  strengthening
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women’s Junior National Handball Team (JNT, n=8) or the Women’s National Handball Team (NT, n=9). The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric) and 60°/s (eccentric). The Mann- Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD) for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02). However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury.
Open Physics
|
2011
|
vol. 9
|
issue 3
792-799
EN
The time-dependent density functional theory (TDDFT) method was performed to investigate the hydrogenbonding dynamics of methyl cyanide (MeNC) as hydrogen bond acceptor in hydrogen donating methanol (MeOH) solvent. The ground-state geometry optimizations and electronic transition energies and corresponding oscillation strengths of the low-lying electronically excited states for the isolated MeNC and MeOH monomers, the hydrogen-bonded MeNC-MeOH dimer and MeNC-2MeOH trimer are calculated by the DFT and TDDFT methods, respectively. An intermolecular hydrogen bond N≡C…H-O is formed between MeNC and methanol molecule. According to Zhao’s rule on the excited-state hydrogen bonding dynamics, we find the intermolecular hydrogen bonds N≡C…H-O are strengthened in electronically excited states of the hydrogen-bonded MeNC-MeOH dimer and MeNC-2MeOH trimer, with the excitation energy of a related excited state being lowered and electronic spectral redshifts being induced. Furthermore, the hydrogen bond strengthening in the electronically excited state plays an important role on the photophysics and photochemistry of MeNC in solutions
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.