Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  spin-triplet pairing
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2011
|
vol. 9
|
issue 4
1057-1076
EN
Within a generalized non-relativistic Fermi-liquid approach we have found general analytical formulae for phase-transition temperatures T c,1(n, H) and T c,2(n, H) (which are nonlinear functions of density, n, and linear of magnetic field, H) for phase transitions in spatially uniform, dense, pure neutron matter from normal to superfluid states with spin-triplet p-wave pairing (similar to anisotropic superfluid phases 3He - A1 and 3He - A2) in steady and homogeneous sufficiently strong magnetic field (but |µn|H ≪ E c < ɛ F(n), where µn is the magnetic dipole moment of a neutron, E c is the cutoff energy and ɛ F(n)is the Fermi energy in neutron matter). General formulae for T c,1,2(n,H) are valid for arbitrary parameterization of the effective Skyrme forces in neutron matter. We have used for definiteness the so-called SLy2, Gs and RATP parameterizations of the Skyrme forces with different exponents in their power dependence on density n (at sub- and supranuclear densities) from the interval 0.7 n 0 ≲ n < n c(Skyrme)< 2 n 0, where n 0 =0.17 fm−3 is the nuclear density and n c(Skyrme)is the the critical density of the ferromagnetic instability in superfluid neutron matter. These phase transitions might exist in the liquid outer core of magnetized neutron stars.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.