Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  solid immersion lens
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We developed a fluorescence confocal microscope equipped with a hemispherical solid immersion lens (SIL) and apply it to study the optical properties of light-harvesting complexes. We demonstrate that the collection efficiency of the SIL-equipped microscope is significantly improved, as is the spatial resolution, which reaches 600 nm. This experimental setup is suitable for detailed studies of physical phenomena in hybrid nanostructures. In particular, we compare the results of fluorescence intensity measurements for a light-harvesting peridinin-chlorophyll-protein (PCP) complex with and without the SIL.
EN
Scanning Near-Field Optical Microscopy (SNOM) has developed during recent decades into a valuable tool to optically image the surface topology of materials with super-resolution. With aperture-based SNOM systems, the resolution scales with the size of the aperture, but also limits the sensitivity of the detection and thus the application for spectroscopic techniques like Raman SNOM. In this paper we report the extension of solid immersion lens (SIL) technology to Raman SNOM. The hemispherical SIL with a tip on the bottom acts as an apertureless dielectric nanoprobe for simultaneously acquiring topographic and spectroscopic information. The SIL is placed between the sample and the microscope objective of a confocal Raman microscope. The lateral resolution in the Raman mode is validated with a cross section of a semiconductor layer system and, at approximately 180 nm, is beyond the classical diffraction limit of Abbe.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.