Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  singlet oxygen
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2012
|
vol. 59
|
issue 1
27-30
EN
The dietary carotenoids provide photoprotection to photosynthetic organisms, the eye and the skin. The protection mechanisms involve both quenching of singlet oxygen and of damaging free radicals. The mechanisms for singlet oxygen quenching and protection against free radicals are quite different - indeed, under some conditions, quenching of free radicals can lead to a switch from a beneficial anti-oxidant process to damaging pro-oxidative situation. Furthermore, while skin protection involves β-carotene or lycopene from a tomato-rich diet, protection of the macula involves the hydroxyl-carotenoids (xanthophylls) zeaxanthin and lutein. Time resolved studies of singlet oxygen and free radicals and their interaction with carotenoids via pulsed laser and fast electron spectroscopy (pulse radiolysis) and the possible involvement of amino acids are discussed and used to (1) speculate on the anti- and pro-oxidative mechanisms, (2) determine the most efficient singlet oxygen quencher and (3) demonstrate the benefits to photoprotection of the eye from the xanthophylls rather than from hydrocarbon carotenoids such as β-carotene.
EN
It was shown that in membranes containing raft domains, the macular xanthophylls lutein and zeaxanthin are not distributed uniformly, but are excluded from saturated raft domains and about ten times more concentrated in unsaturated bulk lipids. The selective accumulation of lutein and zeaxanthin in direct proximity to unsaturated lipids, which are especially susceptible to lipid peroxidation, could be very important as far as their antioxidant activity is concerned. Therefore, the protective role of lutein against lipid peroxidation was investigated in membranes made of raft-forming mixtures and in models of photoreceptor outer segment membranes and compared with their antioxidant activity in homogeneous membranes composed of unsaturated lipids. Lipid peroxidation was induced by photosensitized reactions using rose Bengal and monitored by an MDA-TBA test, an iodometric assay, and oxygen consumption (using EPR spectroscopy and the mHCTPO spin label as an oxygen probe). The results show that lutein protects unsaturated lipids more effectively in membranes made of raft-forming mixtures than in homogeneous membranes. This suggests that the selective accumulation of macular xanthophylls in the most vulnerable regions of photoreceptor membranes may play an important role in enhancing their antioxidant properties and ability to prevent age-related macular diseases (such as age-related macular degeneration (AMD)).
EN
We recently reported that kinobeon A, produced from safflower cells, suppressed the free radical-induced damage of cell and microsomal membranes. In the present study, we investigated whether kinobeon A quenches singlet oxygen, another important active oxygen species. Kinobeon A inhibited the singlet oxygen-induced oxidation of squalene. The second-order rate constant between singlet oxygen and kinobeon A was 1.15 × 1010 M-1s-1 in methanol containing 10% dimethyl sulfoxide at 37°C. Those of α-tocopherol and β-carotene, which are known potent singlet oxygen quenchers, were 4.45 × 108 M-1s-1 and 1.26 × 1010 M-1s-1, respectively. When kinobeon A was incubated with a thermolytic singlet oxygen generator, its concentration decreased. However, this change was extremely small compared to the amount of singlet oxygen formed and the inhibitory effect of kinobeon A on squalene oxidation by singlet oxygen. In conclusion, kinobeon A was a strong singlet oxygen quencher. It reacted chemically with singlet oxygen, but it was physical quenching that was mainly responsible for the elimination of singlet oxygen by kinobeon A. Kinobeon A is expected to have a preventive effect on singlet oxygen-related diseases of the skin or eyes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.