Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  separation factor
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
issue 4
847-851
EN
Although BTP (2,6-di(1,2,4-triazin-3-yl)pyridine) has been proven to be a highly effective N-donor ligand for the selective An(III)/Ln(III) separation, the origin of its selectivity is still under discussion. We present in this paper quantum-chemical calculations at the density functional theory (DFT) and MP2 level which highlight the role of the aquo ions in the separation process. Furthermore these data will be the reference for future force-field development to investigate the differences in An(III) complexation reactions compared to their Ln(III) counterparts.
EN
Partitioning of uranium and neodymium was studied in a ‘molten chloride salt - liquid Ga-X (X = In or Sn) alloy’ system. Chloride melts were based on the low-melting ternary LiCl-KCl-CsCl eutectic. Nd/U separation factors were calculated from the thermodynamic data as well as determined experimentally. Separation of uranium and neodymium was studied using reductive extraction with neodymium acting as a reducing agent. Efficient partitioning of lanthanides (Nd) and actinides (U), simulating fission products and fissile materials in irradiated nuclear fuels, was achieved in a single stage process. The experimentally observed Nd/U separation factor valued up to 106, depending on the conditions.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.