Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  sage
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Currently, increasing attention is being paid to issues related to environmental protection, waste management, as well as to the development of polymers with useful properties. The research presented here involved preparation of hydrogels based on Beetosan® - a chitosan derived from the multi-stage processing of dead bees. Moreover, hydrogels were additionally modified with natural substances - i.e. bee pollen and extract of Salvia officinalis (sage) that are well known for the presence of many compounds with beneficial properties from a medical point of view. Materials have been first obtained by photopolymerization. Then, their surface morphology, wettability and cytotoxicity to selected cell lines have been determined. It can be stated that such combination of Beetosan® hydrogel matrix and the mentioned additives resulted in a preparation of polymers characterized by negative impact on cancer cells. Impact of hydrogels with sage is slightly more intense due to the presence of substances such as ursalic or rosmaric acid that are characterized to have anticancer activity. Such negative impact has not been observed in case of studies using fibroblasts. Furthermore, addition of natural substances into hydrogels resulted in a more homogeneous surface and in the decrease of wettability angle of the tested polymers. It can be concluded that the use of natural-derived reagents and synthesis of polymers using these reagents (as a result of environmentally friendly photopolymerization) yields materials with interesting properties for medical purposes, with particular emphasis on antitumor activity, and without significant negative impact on fibroblasts.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.