Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  reduction mechanism
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In order to clarify the poorly understood mechanisms of two-electron reduction of quinones by flavoenzymes, we examined the quinone reductase reactions of a member of a structurally distinct old yellow enzyme family, Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase (PETNR). PETNR catalyzes two-electron reduction of quinones according to a 'ping-pong' scheme. A multiparameter analysis shows that the reactivity of quinones increases with an increase in their single-electron reduction potential and pKa of their semiquinones (a three-step (e-,H+,e-) hydride transfer scheme), or with an increase in their hydride-transfer potential (E7(H-)) (a single-step (H-) hydride transfer scheme), and decreases with a decrease in their van der Waals volume. However, the pH-dependence of PETNR reactivity is more consistent with a single-step hydride transfer. A comparison of X-ray data of PETNR, mammalian NAD(P)H : quinone oxidoreductase (NQO1), and Enterobacter cloacae nitroreductase, which reduce quinones in a two-electron way, and their reactivity revealed that PETNR is much less reactive, and much less sensitive to the quinone substrate steric effects than NQO1. This may be attributed to the lack of π-π stacking between quinone and the displaced aromatic amino acid in the active center, e.g., with Phe-178' in NQO1.
EN
We aimed to elucidate the role of electronic and structural parameters of nitroaromatic compounds in their two-electron reduction by NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2). The multiparameter regression analysis shows that the reactivity of nitroaromatic compounds (n = 38) increases with an increase in their single-electron reduction potential and the torsion angle between nitrogroup(s) and the aromatic ring. The binding efficiency of nitroaromatics in the active center of NQO1 exerted a less evident role in their reactivity. The reduction of nitroaromatics is characterized by more positive entropies of activation than the reduction of quinones. This points to a less efficient electronic coupling of nitroaromatics with the reduced isoalloxazine ring of FAD, and may explain their lower reactivity as compared to quinones. Another important but poorly understood factor enhancing the reactivity of nitroaromatics is their ability to bind at the dicumarol/quinone binding site in the active center of NQO1.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.