Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  reducibility
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Process Engineering in Iron Production

100%
|
|
vol. 34
|
issue 1
63-76
EN
Balance, thermodynamic and mainly kinetic approaches using methods of process engineering enable to determine conditions under which iron technology can actually work in limiting technological states, at the lowest reachable fuel consumption (reducing factor) and the highest reachable productivity accordingly. Kinetic simulation can be also used for variant prognostic calculations. The paper deals with thermodynamics and kinetics of iron making process. It presents a kinetic model of iron oxide reduction in a low temperature area. In the experimental part it deals with testing of iron ore feedstock properties. The theoretical and practical limits determined by heat conditions, feedstock reducibility and kinetics of processes are calculated.
EN
A series of samples, noted Al_xCe_{1-x} has been prepared by hydrolysis, from γ-Al₂O₃ and CeO₂. These samples were calcined under air at 450, 900 and 1200°C, and then characterized by specific surface area, X-ray diffraction and thermoreduction programmed under H₂. Obtained results show that after calcination at 450 and 900°C, the cerium decreases the surface of alumina. Results of X-ray diffraction and thermoreduction programmed under H₂ experiments showed that the samples are constituted of: γ-Al₂O₃ and CeO₂. The global consumption of hydrogen increase with rate of CeO₂ added. At 1200°C, the sintering of the samples is very important and γ-Al₂O₃ is transformed into the α-phase. The decrease in specific surface area is more accentuated for Al₁Ce₀ sample, since sintering occurs due to the growth in crystallite size. Thermoreduction programmed under H₂ experiments show that reduction of CeO₂ much more accentuated for ceria samples or its decrease can reflect some alterations of the nature of interactions between Al₂O₃ and CeO₂.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.