Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  quaternized chitosan
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This review considers articles on the formation of hydrogels based on chitosan as well as succinylated and quaternized chitosan derivatives. They are synthesized using low toxicity reagents, under ordinary conditions (low production costs). Chitosan derivatives are soluble in an extended range of pH values and characterized by mucoadhesiveness, bioavailability and biodegradability, which extends the potential of their medical applications. One of the most important properties of chitosan and its derivatives is the ability to form hydrogels. Depending on the nature of the bonds that occur during formation, hydrogels are divided into chemically or physically crosslinked, or a mixture of the two. Chemically crosslinked gels have covalent bonds, while physically crosslinked gels are formed by noncovalent interactions, for example, ionic. Mixed hydrogels have both types of crosslinking.
EN
Chitosan (Ch) is an attractive biopolymer with multiple reactive groups. However it is poorly soluble at neutral pH. Quaternization improves its solubility and permits the development of various positively charged drug delivery systems. The aim of this work was to study the solubility, toxicity, cell binding, and penetration of 20 kDa chitosan with 9, 40, 58 and 98% of quaternary ammonium group substitution (ChQ1 to ChQ4 accordingly). We showed that ChQ with substitution degree >40% was soluble in a wide pH range. Unexpectedly ChQ2 and ChQ3 were more toxic to cells than Ch, ChQ1 and ChQ4. Higher toxicity of ChQ was found against macrophage like cell line RAW264.7 than against epithelial cells MiaPaCa-2. All ChQ, in contrast to unmodified Ch, easily bound and penetrated the cells with the highest uptake by ChQ4. Thus, quaternized chitosan derivatives can be used for biomedical applications.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.