Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  pumping
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2010
|
vol. 8
|
issue 3
318-339
EN
Four predictions of Mills’ Grand Unified Theory of Classical Physics (GUTCP) regarding atomic hydrogen undergoing a catalytic reaction with certain atomized elements and ions which resonantly, nonradiatively accept integer multiples of the potential energy of atomic hydrogen, m · 27.2 eV wherein m is an integer, have been confirmed experimentally. Specifically, a catalyst comprises a chemical or physical process with an enthalpy change equal to an integer multiple m of the potential energy of atomic hydrogen, 27.2 eV. For He+ m = 2, due to its ionization reaction to He2+, and two H atoms formed from H2 by collision with a third, hot H can also act as a catalyst with m = 2 for this third H. The product is H(1/p), fractional Rydberg states of atomic hydrogen called “hydrino atoms” wherein n = 1/2, 1/3, 1/4, …, 1/p(p≤137 is an integer) replaces the well-known parameter n = integer in the Rydberg equation for hydrogen excited states. The predictions for the hydrino reaction of (1) pumping of the catalyst excited states, (2) characteristic EUV continuum radiation, (3) fast H, and (4) hydrino products were observed in multiple catalyst-hydrogen plasma systems.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.