Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  proteinase inhibitors
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Engineered resistance against proteinases

100%
|
2007
|
vol. 54
|
issue 3
523-536
EN
Exogenous proteinase inhibitors are valuable and economically interesting protective biotechnological tools. We examined whether small proteinase inhibitors when fused to a selected target protein can protect the target from proteolytic degradation without simultaneously affecting the function and activity of the target domain. Two proteinase inhibitors were studied: a Kazal-type silk proteinase inhibitor (SPI2) from Galleria mellonella, and the Cucurbita maxima trypsin inhibitor I (CMTI I). Both inhibitors target serine proteinases, are small proteins with a compact structure stabilized by a network of disulfide bridges, and are expressed as free polypeptides in their natural surroundings. Four constructs were prepared: the gene for either of the inhibitors was ligated to the 5' end of the DNA encoding one or the other of two selected target proteins, the coat protein (CP) of Potato potyvirus Y or the Escherichia coli β-glucuronidase (GUS). CMTI I fused to the target proteins strongly hampered their functions. Moreover, the inhibitory activity of CMTI I was retained only when it was fused to the CP. In contrast, when fused to SPI2, specific features and functions of both target proteins were retained and the inhibitory activity of SPI2 was fully preserved. Measuring proteolysis in the presence or absence of either inhibitor, we demonstrated that proteinase inhibitors can protect target proteins used either free or as a fusion domain. Interestingly, their inhibitory efficiency was superior to that of a commercial inhibitor of serine proteinases, AEBSF.
|
2006
|
vol. 53
|
issue 1
33-64
EN
Parasites are designed by evolution to invade the host and survive in its organism until they are ready to reproduce. Parasites release a variety of molecules that help them to penetrate the defensive barriers and avoid the immune attack of the host. In this respect, particularly interesting are enzymes and their inhibitors secreted by the parasites. Serine-, aspartic-, cysteine-, and metalloproteinases are involved in tissue invasion and extracellular protein digestion. Helminths secrete inhibitors of these enzymes (serpins, aspins, and cystatins) to inhibit proteinases, both of the host and their own. Proteinases and their inhibitors, as well as helminth homologues of cytokines and molecules containing phosphorylcholine, influence the immune response of the host biasing it towards the anti-inflammatory Th2 type. Nucleotide-metabolizing enzymes and cholinesterase are secreted by worms to reduce inflammation and expel the parasites from the gastrointestinal tract. An intracellular metazoan parasite, Trichinella spiralis, secretes, among others, protein kinases and phosphatases, endonucleases, and DNA-binding proteins, which are all thought to interfere with the host cellular signals for muscle cell differentiation. Secretion of antioxidant enzymes is believed to protect the parasite from reactive oxygen species which arise from the infection-stimulated host phagocytes. Aside from superoxide dismutase, catalase (rarely found in helminths), and glutathione peroxidase (selenium-independent, thus having a poor activity with H2O2), peroxiredoxins are probably the major H2O2-detoxifying enzymes in helminths. Secretion of antioxidant enzymes is stage-specific and there are examples of regulation of their expression by the concentration of reactive oxygen species surrounding the parasite. The majority of parasite-secreted molecules are commonly found in free-living organisms, thus parasites have only adapted them to use in their way of life.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.