Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  procoagulant activity
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Desmopressin (DDAVP) action on platelets is associated with the development of procoagulant response but the underlying mechanism of this phenomenon is not known. We investigated whether this effect of DDAVP might be due to activation of plasma membrane Na+/H+ exchanger. The DDAVP-induced platelet procoagulant response, measured as phospholipid-dependent thrombin generation, was dose dependent and significantly weaker than that produced by collagen or monensin (mimics Na+/H+ antiport). Both the DDAVP- and collagen-produced procoagulant responses were less pronounced in the presence of EIPA, an Na+/H+ exchanger inhibitor. Flow cytometry studies revealed that in vitro treatment of platelets with DDAVP or collagen was associated with the appearance of both degranulated (and fragmented) and swollen cells. The DDAVP-evoked rise in size and granularity heterogeneity was similar to that produced by collagen or monensin and was not observed in the presence of EIPA. Using flow cytometry and annexin V-FITC as a probe for phosphatidylserine (PS) we demonstrated increased and uniform binding of this marker to all subsets of DDAVP-treated platelet population. The DDAVP-evoked PS expression was dose dependent, strongly reduced by EIPA and weaker than that caused by monensin or collagen. As judged by optical swelling assay, DDAVP in a dose dependent manner produced a rise in platelet volume. The swelling was inhibited by EIPA and its kinetics was similar to that observed in the presence of monensin. Electronic cell-sizing measurements showed an increase in mean platelet volume and a decrease in platelet count and platelet crit upon treatment with DDAVP. DDAVP elicited a slow (much slower than collagen) alkalinization of platelet cytosol. Altogether the data indicate an involvement of Na+/H+ exchanger in the generation of procoagulant activity in DDAVP-treated platelets.
EN
In circulation, platelets may come into contact with both exogenous (cardiac glycoside treatment) and endogenously produced inhibitors of Na+/K+-ATPase. We examined whether blocking of platelet Na+/K+-ATPase by ouabain results in generation of procoagulant activity. It was shown that an in vitro treatment of platelets with ouabain (20-200 µM for 20 to 60 min) is associated with an intracellular accumulation of sodium ([Na+]i), generation of a weak calcium signal, and expression of procoagulant activity. The ouabain-induced procoagulant response was dose- and time-related, less pronounced than that evoked by collagen and similar to that produced by gramicidin, not affected by EDTA or aspirin, and strongly reduced in the absence of extracellular Na+ or by hyperosmolality. Flow cytometry studies revealed that ouabain treatment results in a unimodal left shift in the forward and side scatter of the entire platelet population indicating morphological changes of the plasma membrane. The shift was dose related, weaker than that evoked by collagen and similar to that produced by gramicidin. Ouabain-treated platelets express phosphatidylserine (PS). The ouabain-evoked PS expression was dose- and time-dependent, weaker than that produced by collagen and similar to that evoked by gramicidin. Electronic cell sizing measurements showed a dose-dependent increase in mean platelet volume upon treatment with ouabain. Hypoosmotically-evoked platelet swelling resulted in the appearance of procoagulant activity. Thromboelastography measurements indicate that, in whole blood, nanomolar (50-1000 nM, 15 min) concentrations of ouabain significantly accelerate the rate of clot formation initiated by contact and high extracellular concentration of calcium. We conclude that inefficiently operating platelet Na+/K+-ATPase results in a rise in [Na+]i. An increase in [Na+]i and the swelling associated with it may produce PS exposure and a rise in membrane curvature leading to the generation of a procoagulant activity.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.