Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  porous carbon
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The microporous carbon materials were prepared by chemical activation of Polish coal with potassium hydroxide using the simplex design method for planning the experiments. The experimental parameters were varied to identify the optimum conditions. Coal can be an excellent starting material for the preparation of high porous carbons for natural gas storage. The porosity of the resultant carbons was characterized by nitrogen adsorption (-196°C). Methane adsorption was investigated in a volumetric laboratory installation at range pressures from 1 to 3.5 MPa (25°C).The best results of methane storage capacity (557 cm3 · g-1) were obtained when using an impregnation ratio 3.41/1 KOH/precursor and temperature at 592°C, (SLANG = 2091 m2 · g-1). The parameters of the preparation of high porosity and high methane adsorption carbon were determined by a fast and simple method.
EN
Porous carbons loaded with magnesium oxide were prepared through one-step process. Poly(ethylene terephthalate) and natural magnesite were used as carbon source and MgO precursor, respectively. An impact of a temperature and relative amounts of raw components used for preparations on the textural parameters of resulting hybrid materials is presented and discussed. As found, pore structure parameters tend to decrease along with MgO loading and temperature used during preparation process. Micropore area is the parameter being reduced primarily.
EN
Porous carbons obtained from poly(ethylene terephtalate) contained in a mixture with either MgCO3 or Mg(OH)2 were examined as adsorbents for removal of humic acid from water. Adsorption of the model contaminants is discussed in relation to the textural parameters of the obtained carbon materials. Pore structure parameters of the carbonaceous materials were strongly influenced by preparation conditions including temperature and relative amounts of the inorganics used during preparations as template. Porous carbons prepared revealed a potential to purify water from the model contaminant of high molecular weight. The results presented confirmed a key role of mesoporosity in the adsorption of humic acid. Fluorescence spectroscopy was confirmed to be an useful method to evaluate concentration of humic acid in water.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.