Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  polypropylene
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Atmospheric-pressure air and nitrogen plasmas generated by surface dielectric barrier discharges have been used to incorporate new functionalities at the surface of polypropylene nonwoven fabric. The main goals were to activate the polymer surfaces for subsequent immobilization of chitosan from water solution without using any crosslinking and wetting agents. The samples were analyzed by diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The nitrogen plasma treatment resulted in relatively high oxygen incorporation, about 9 atomic % mainly in aliphatic C=O type bonds and about 4 at.% of nitrogen incorporation in amine and other nitrogen functionalities. Chitosan was immobilized on the fabric fibers surfaces very homogeneously in amount of 2 - 5 g m-2. The chitosan coated samples exhibited a good laundering durability and strong antimicrobial activity against Bacillus subtilis and Escherichia coli.
EN
The paper reports of synthesis and investigation of polymeric nanocomposites based on isotactic polypropylene and titanium dioxide nanoparticles PP+TiO₂ (PPT). The structure of the PPT nanocomposites was studied by scanning electron and atomic force microscopy. There was also studied the influence of the polarization process by corona discharge on the structure and photoluminescence properties of PPT nanocomposites. It was found that intensity of the photoluminescence after the polarization increases, and this depends on the concentration of titan dioxide nanoparticles in the polymer matrix. It was shown that rms roughness for non-polarized sample compositions is 60-100 nm, whereas for polarized samples after the corona discharge polarization, makes 20-40 nm, i.e. there takes place grinding of the structural elements. It is supposed that, in the composite there forms sufficiently high internal local field, due to the boundary charges, so under the influence of this field there were excited additional luminescent centers, and as a result, after the polarization there was observed the increase of luminescence intensity.
EN
Thermal degradation of the low density polyethylene (LDPE), polypropylene (PP) and the municipal waste plastics was investigated. The thermo-catalytic degradation of LDPE and PP was studied in the presence of the following catalysts: four different types of montmorillonite: K5, K10, K20, K30 and - for comparison - zeolites (natural - clinoptilolite, YNa+ and YH+). Thermal analyses TG-DTA-MS of polymers and polymer-catalyst mixtures were carried out in an argon flow atmosphere in isothermal and dynamic conditions. The following order was found: in lowering the reaction temperature for LDPE degradation YH+ > mK5 > mK20 = mK30 >mK10 > NZ > YNa+; for PP degradation: mK20 > mK5 = mK30 >mK10 > YH+ > NZ > YNa+. The activity tests were carried out in a stainless steel batch reactor under atmospheric pressure in a wide temperature range of up to 410°C, and using the atmosphere of argon flow. The liquid products were analysed by the GC-MS method. The hydrocarbons in the liquid products from thermal degradation of polymers were broadly distributed in the carbon fractions of C8 to C26 - for LDPE and C6 to C31 for PP.
5
63%
EN
The results of the studies on the synthesis, mechanical and thermal properties of polypropylene composites with various amount of halloysite filler are presented. Halloysite (HNT) belongs to the silica type characterized by a two-layer 1:1 structure. This work was aimed to develop a method for the modification of halloysite in its prime use as a filler for polypropylene by extrusion. The composites contain 1, 3, 5 and 7 wt.% of HNT. The degree of crystallinity of the composites decrease with increasing halloysite content. The results confirm the expectations that composites of interesting physicochemical, mechanical and thermal properties can be obtained. The mechanical properties studied show that the filler modification method used leads to the synthesis of polymer composites of improved thermal and mechanical properties.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.