Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  polyethylene
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this work obtaining of magnesium hydroxide from the solutions obtained during magnesium removal from zinc concentrates is presented. The received product was used for the winning of composites from polyethylene (PE) using extrusion and injection methods. The obtained composites were tested in terms of thermal stability (TG, DTG) as well as combustibility (LOI and thermovision camera). The preliminary results indicate the beneficial effect of the decrease of PE quality by magnesium hydroxide obtained by means of solution purification and precipitation of Mg(OH)2 by means of soda lye.
EN
In this work obtaining of magnesium hydroxide from the solutions obtained during magnesium removal from zinc concentrates is presented. The received product was used for the winning of composites from polyethylene (PE) using extrusion and injection methods. The obtained composites were tested in terms of thermal stability (TG, DTG) as well as combustibility (LOI and thermovision camera). The preliminary results indicate the beneficial effect of the decrease of PE quality by magnesium hydroxide obtained by means of solution purification and precipitation of Mg(OH)2 by means of soda lye.
EN
The work is on the production of spindle palm petiole fiber reinforced high density polyethylene (HDPE) composites. The Spindle Palm Petiole Fiber (SPPF) and HDPE composites were produced using injection molding machine. SPPF were characterized to determine their chemical compositions. Central Composite Design (CCD) was applied as an optimization tool of RSM for cellulose and tensile strength. The chemical composition of the SPPF is cellulose (65%), hemicelluloses (17.1%) and lignin (14.1%). Surface modifications of the fiber enhanced the properties of the fiber. Quadratic model adequately described the relationship between percentage cellulose yield and variables: chemical concentration, mass/volume ratio and time. The cellulose content at optimal level is 60.3% at 3.5wt% concentration, 4g/l mass/volume ratio and time of 16hr. Also for the composite, the quadratic model described the relationship between tensile strength and temperature, fiber/polymer ratio and time. The optimum tensile strength of 42.0 Mpa was obtained at fiber/polymer ratio of 29wt%, temperature of 172 °C and time of 10 min. Water absorbed by the untreated fiber was high compared to the chemically treated fiber. The chemical treatment created a better interfacial bonding of SPPF/HDPE and this could be responsible for the observations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.