Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  platelet
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Human platelets diadenosine triphosphatase was characterised and compared with the Fhit protein, a human tumour suppressor with diadenosine triphosphatase activity. Both enzymes exhibit similar Km, are similarly activated by Mg2+, Ca2+ and Mn2+, and inhibited by Zn2+ and suramin. However, they are differentially inhibited by Fhit antibodies and exhibit differences in gel-filtration behaviour.
|
2005
|
vol. 52
|
issue 2
411-415
EN
Platelets play a key role not only in physiological haemostasis, but also under pathological conditions such as thrombosis. Platelet activation may be initiated by a variety of agonists including thrombin, collagen, thromboxane or adenosine diphosphate (ADP). Although ADP is regarded as a weak agonist of blood platelets, it remains an important mediator of platelet activation evoked by other agonists, which induce massive ADP release from dense granules, where it occurs in molar concentrations. Thus, ADP action underlies a positive feedback that facilitates further platelet aggregation and leads to platelet plug formation. Additionally, ADP acts synergistically to other, even weak, agonists such as serotonin, adrenaline or chemokines. Blood platelets express two types of P2Y ADP receptors: P2Y_1 and P2Y_12. ADP-dependent platelet aggregation is initiated by the P2Y1 receptor, whereas P2Y_12 receptor augments the activating signal and promotes platelet release reaction. Stimulation of P2Y_12 is also essential for ADP-mediated complete activation of GPIIb-IIIa and GPIa-IIa, and further stabilization of platelet aggregates. The crucial role in blood platelet biology makes P2_Y12 an ideal candidate for pharmacological approaches for anti-platelet therapy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.