Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  plasma diagnostics
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Experiments were carried out on the PF-1000 plasma focus device, with a deuterium filling and with deuterium puffing from a gas-puff nozzle placed on the axis of the anode face. The current was reaching 2 MA. 15 interferometric frames from one shot were recorded with a Nd:YLF laser and a Mach–Zehnder interferometer, with 10–20 ns delay between the frames. As a result, the temporal and spatial distribution of the linear densities and the radial and axial velocities of the moving of plasma in the dense plasma column could be estimated.
EN
Runaway electrons present an important part of the present efforts in nuclear fusion research with respect to the potential damage of the in-vessel components. The COMPASS tokamak a suitable tool for the studies of runaway electrons, due to its relatively low vacuum safety constraints, high experimental flexibility and the possibility of reaching the H-mode D-shaped plasmas. In this work, results from the first experimental COMPASS campaign dedicated to runaway electrons are presented and discussed in preliminary way. In particular, the first observation of synchrotron radiation and rather interesting raw magnetic data are shown.
|
|
issue 2
207-212
EN
Many parameters of non-equilibrium plasma generated by high intensity and fast lasers depend on the pulse intensity and the laser wavelength. In conditions favourable for the target normal sheath acceleration (TNSA) regime the ion acceleration from the rear side of the target can be enhanced by increasing the thin foil absorbance through the use of nanoparticles and nanostructures promoting the surface plasmon resonance effect. In conditions favourable for the backward plasma acceleration (BPA) regime, when thick targets are used, a special role is played by the laser focal position with respect to the target surface, a proper choice of which may result in induced self-focusing effects and non-linear acceleration enhancement. SiC detectors employed in the time-of-flight (TOF) configuration and a Thomson parabola spectrometer permit on-line diagnostics of the ion streams emitted at high kinetic energies. The target composition and geometry, apart from the laser parameters and to the irradiation conditions, allow further control of the plasma characteristics and can be varied by using advanced targets to reach the maximum ion acceleration. Measurements using advanced targets with enhanced the laser absorption effect in thin films are presented. Applications of accelerated ions in the field of ion source, hadrontherapy and nuclear physics are discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.