Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  phospholipase C
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Regulation of nuclear phospholipase C activity.

100%
|
|
vol. 51
|
issue 2
391-395
EN
A body of evidence, linking inositide-specific phospholipase C (PI-PLC) to the nucleus, is quite extensive. The main isoform in the nucleus is PI-PLCβ1, whose activity is up-regulated in response to insulin-like growth factor-1 (IGF-1) or insulin stimulation. Whilst at the plasma membrane this PI-PLC is activated and regulated by Gαq/α11 and Gβg subunits, there is yet no evidence that qα/α11 is present within the nuclear compartment, neither GTP-γ-S nor AlF4 can stimulate PI-PLCβ1 activity in isolated nuclei. Here we review the evidence that upon occupancy of type 1 IGF receptor there is translocation to the nucleus of phosphorylated mitogen-activated protein kinase (MAPK) which phosphorylates nuclear PI-PLCβ1 and triggers its signalling, hinting at a separate pathway of regulation depending on the subcellular location of PI-PLCβ1. The difference in the regulation of the activity of PI-PLCβ1mirrors the evidence that nuclear and cytoplasmatic inositides can differ markedly in their signalling capability. Indeed, we do know that agonists which affect nuclear inositol lipid cycle at the nucleus do not stimulate the one at the plasma membrane.
|
2003
|
vol. 50
|
issue 4
1097-1110
EN
Phospholipase C (PLC, EC 3.1.4.11) is an enzyme crucial for the phosphoinositol pathway and whose activity is involved in eukaryotic signal transduction as it generates two second messengers: diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). There are four major types of phospholipase C named: β, γ, δ and the recently discovered ε, but this review will focus only on the recent advances for the γ isozymes of PLC. So far, four d isozymes (named γ1-4) have been discovered and examined. They differ with regard to cellular distribution, activities, biochemical features and involvement in human ailments.
|
2002
|
vol. 49
|
issue 4
877-889
EN
In this review we summarize the present status of our knowledge on the enzymes involved in the extracellular metabolism of nucleotides and the receptors involved in nucleotide signalling. We focus on the mechanism of the ATP and ADP signalling pathways in glioma C6, representative of the type of nonexcitable cells. In these cells, ATP acts on the P2Y2 receptor coupled to phospholipase C, whereas ADP on two distinct P2Y receptors: P2Y1 and P2Y12. The former is linked to phospholipase C and the latter is negatively coupled to adenylyl cyclase. The possible cross-talk between the ATP-, ADP- and adenosine-induced pathways, leading to simultaneous regulation of inositol 1,4,5-trisphosphate and cAMP mediated signalling, is discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.