Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  peptides
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In order to be able to study complex biological samples, a micro-capillary liquid chromatography system was coupled to a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer. The setup was tested on a tryptic digest of bovine serum albumin, which resulted in high sequence coverage (> 92% the protein.
EN
This paper presents a mathematical-computational toy model based on the assumed dynamic principles of prebiotic peptide evolution. Starting from a pool of amino acid monomers, the model describes in a generalized manner the generation of peptides and their sequential information. The model integrates the intrinsic and dynamic key elements of the initiation of biopolymerization, such as the relative amino acid abundances and polarities, as well as the oligomer reversibility, i.e. fragmentation and recombination, and peptide self-replication. Our modeling results suggest that the relative amino acid abundances, as indicated by Miller-Urey type electric discharge experiments, played a principal role in the early sequential information of peptide profiles. Moreover, the computed profiles display an astonishing similarity to peptide profiles observed in so-called biological common ancestors found in the following three microorganisms; E. coli, M. jannaschii, and S. cereviasiae. The prebiotic peptide fingerprint was obtained by the so-called polarity index method that was earlier reported as a tool for the identification of cationic amphipathic antibacterial short peptides.
3
Content available remote

Unravelling peptidomes byin silicomining

75%
|
|
vol. 2
|
issue 1
EN
Peptides of great number and diversity occur in all domains of life and exhibit a range of pharmaceutically relevant bioactivities. The complexity of biological samples including human cells or tissues, plant extracts or animal venom cocktails, often impedes the discovery of novel bioactive peptides using mass spectrometrybased peptidomics analysis. An increasing number of publicly available genome and transcriptome datasets, together with refined bioinformatics analysis, allows for rapid identification of novel peptides which may have been previously unrecognized. Moreover, a combination of information extracted from in silico mining approaches together with data derived from mass spectrometrybased studies provides new impetus for future peptidome analyses, including the discovery of novel bioactive peptides that can serve as starting points for drug development.
EN
A method has been developed for laser desorption/ionization of catecholamines from porous silicon. This methodology is particularly attractive for analysis of small molecules. MALDI TOF mass spectrometry, although a very sensitive technique, utilizes matrices that need to be mixed with the sample prior to their analysis. Each matrix produces its own background, particularly in the low-molecular mass region. Therefore, detection and identification of molecules below 400 Da can be difficult. Desorption/ionization of samples deposited on porous silicon does not require addition of a matrix, thus, spectra in the low-molecular mass region can be clearly readable. Here, we describe a method for the analysis of catecholamines. While MALDI TOF is superior for proteomics/peptidomics, desorption/ionization from porous silicon can extend the operating range of a mass spectrometer for studies on metabolomics (small organic molecules and their metabolites, such as chemical neurotransmitters, prostaglandins, steroids, etc.).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.