Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  peptide-lipid interactions
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
|
2014
|
vol. 61
|
issue 3
421-426
EN
The release of influenza RNA inside the host cell occurs through the fusion of two membranes, the viral envelope and that of the cellular endosome. The fusion is mediated by the influenza hemagglutinin protein (HA), in particular by the fusion peptide (HAfp) located in the N-terminal fragment of HA2 subunit. This protein fragment anchors in the internal endosomal membrane, whereas the C-terminal HA2 part comprises a transmembrane domain (TMD) embedded in the viral envelope. A drop of pH in the endosome acts as the main trigger for HA2 large conformational change that leads to anchoring of the fusion peptide, close contact of the membranes and the subsequent fusion. Throughout the years the major research effort was focused on a 20-aminoacid fragment (HAfp1-20), shown by NMR to adopt a 'boomerang'-like structure. However, recent studies showed that extending HAfp1-20 by three highly conserved residues W21-Y22-G23 leads to formation of a unique, tight helical hairpin structure. This review summarizes recently discovered structural aspects of influenza fusion peptides and their relations with the membrane fusion mechanism.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.