Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  optical lattices
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The dynamics of repulsive bosons condensed in an optical lattice is effectively described by the Bose-Hubbard model. The classical limit of this model, reproduces the dynamics of Bose-Einstein condensates, in a periodic potential, and in the superfluid regime. Such dynamics is governed by a discrete nonlinear Schrödinger equation. Several papers, addressing the study of the discrete nonlinear Schrödinger dynamics, have predicted the spontaneous generation of (classical) breathers in coupled condensates. In the present contribute, we shall focus on localized solutions (quantum breathers) of the full Bose-Hubbard model. We will show that solutions exponentially localized in space and periodic in time exist also in absence of randomness. Thus, this kind of states, reproduce a novel quantum localization phenomenon due to the interplay between bounded energy spectrum and non-linearity.
Open Physics
|
2009
|
vol. 7
|
issue 1
32-40
EN
We study ground-state properties of ultracold fermionic mixtures with strong mass imbalance in one and two-dimensional optical lattices through large scale numerical simulations of the attractive Falicov-Kimball model in harmonic confining potentials. In the one-dimensional case, we observe a formation of insulating atomic-density-wave domains at low particle fillings and a coexistence of insulating and metallic domains at intermediate and large particle fillings. Moreover, we show how the formation of metallic regions is reflected in the momentum distribution of the light atoms. In two dimensions, we find a rich spectrum of density-wave patterns including the homogeneous distributions, the axial striped distributions, the labyrinthine phases as well as the segregated phases.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.