Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  novel-liver derived cell line
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Liver is a unique mammalian organ with a great capacity of regeneration related to its function. After surgical resection or injury, hepatic cells, especially hepatocytes, can proliferate rapidly to repair the damage and to regenerate the structure without affecting the function of the liver. Loss of catalase activity during regeneration indicates that oxidative stress is present in the liver not only in pathological conditions but also as a 'physiological' factor during regeneration. As we have shown in our previous work, liver stem cell-like cells treated with 4-hydroxynonenal (HNE), a cytotoxic and growth regulating lipid peroxidation product, recover in the presence of spleen cells. In the current study we characterized this novel cell line as liver-derived progenitor/oval-like cells, (LDP/OCs), i.e. functional liver stem-like cells. We showed that LDP/OC were OV6 positive, with abundant glycogen content in the cytoplasm and expressed α-fetoprotein, albumin, biliverdin reductase and γ-glutamyl transferase. Also, we compared their growth in vitro with the growth of cultured primary hepatocytes stressed with HNE and co-cultured with autologous spleen cells. The influence of spleen cells on HNE-treated primary hepatocytes and on LDP/OCs showed that spleen cells support in a similar manner the recovery of both types of liver cells indicating their important role in regeneration. Hence, LDP/OC cells may provide a valuable tool to study cell interactions and the role on HNE in liver regeneration.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.