Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  non-thermal plasma
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this work, degradation of the anthraquinonic dye Acid Blue 25 by non-thermal plasma at atmospheric pressure with and without photocatalyst is investigated. Titanium dioxide (TiO2) is used as a photocatalyst. The dye degradation by plasma in the presence of TiO2 is investigated as a function of TiO2 concentration, dye concentration and pH. The degradation rate is higher in acidic solutions with pH of 2 to 4.3, especially at pH 2, and decreases to 0.38 mg L-1 min-1 with the increase of pH from 2 to 5.65. A similar effect is observed in basic media, where a higher degradation rate is found at pH = 10.3. The degradation rate increases in the presence of TiO2 compared to the discharge without photocatalysis. The results show that the degradation of the dye increases in the presence of TiO2 until the catalyst load reaches 0.5 g L-1 after which the suppression of AB25 degradation is observed. The results indicate that the tested advanced oxidation processes are very effective for the degradation of AB25 in aqueous solutions.
EN
This contribution attempts to establish an easy-to-apply non-thermal plasma reactor for efficient toluene removal. Derived from the already established knowledge of the so called Dielectric Barrier Discharge (DBD) Stack Reactor a new model reactor was used in this work. The DBD Stack Reactor is a multi-elements reactor but in this work only one stack element was used to investigate the efficiency and efficacy of toluene removal. In case of reliable results the scalability process for industrial application is already well known. Therefore, laboratory experiments were conducted in dry and wet synthetic air with an admixture of 50 ppm toluene. Along with the toluene removal process the electrical behaviour of the discharge configuration was investigated. It was found that the electrical capacitance of the dielectric barrier changes with variations of the operating voltage. This could be due to the changes in the area of the dielectric barrier which is covered with plasma. Additionally, it was found that the power input into the plasma, at a fixed operating voltage, is proportional to the frequency, which is in agreement with the literature. Regarding the decomposition process, the total removal of toluene was achieved at specific input energy densities of 55 J L-1 under dry conditions and 110 J L-1 under wet conditions. The toluene removal was accompanied by the production of nitric acid (dry conditions) and formic acid (wet conditions). The latter suggested a combination of the plasma reactor with a water scrubber as an approach for total removal of pollutant molecules.
EN
The application of non-thermal atmospheric pressure plasma raises a hope for the new wound healing strategies. Next to its antibacterial effect it is known to stimulate skin cells. However, monocytes are also needed for the complex process of a wound healing. This study investigates the impact of plasma on the intracellular signaling events in the primary human monocytes. The proliferative MEK-ERK (MAPK/ERK kinase-extracellular signal-regulated kinase) pathway was activated by short plasma treatment times. In contrast, an induction of the apoptotic JNK (c-Jun N-terminal kinase) cascade as well as activation of caspase 3 were observed after long plasma exposure. These findings indicate that monocytes can be differentially stimulated by plasma treatment and may contribute to the proper wound recovery.
EN
In this study, the catalytic effect of TiO2-ZnO/GAC coupled with non-thermal plasma was investigated on the byproducts distribution of decomposition of chlorinated VOCs in gas streams. The effect of specific input energy, and initial gas composition was examined in a corona discharge reactor energized by a high frequency pulsed power supply. Detected by-products for catalytic NTP at 750 J L-1 included CO, CO2, Cl2, trichloroacetaldehyde, as well as trichlorobenzaldehyde with chloroform feeding, while they were dominated by CO, CO2, and lower abundance of trichlorobenzaldehyde and Cl2 with chlorobenzene introduction. Some of the by-products such as O3, NO, NO2, and COCl2 disappeared totally over TiO2-ZnO/GAC. Furthermore, the amount of heavy products such as trichlorobenzaldehyde decreased significantly in favor of small molecules such as CO, CO2, and Cl2 with the hybrid process. The selectivity towards COx soared up to 77% over the catalyst at 750 J L-1 and 100 ppm of chlorobenzene.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.