Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  nodulation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
2016
|
vol. 63
|
issue 1
53-58
EN
Abscisic acid (ABA) is an ubiquitous plant hormone and one of the foremost signalling molecules, controlling plants' growth and development, as well as their response to environmental stresses. To date, the function of ABA has been extensively investigated as an abiotic stress molecule which regulates the plants' water status. However, in the context of symbiotic associations, ABA is less recognized. In contrast to well-described auxin/cytokinin and gibberellin/strigolactone involvement in symbioses, ABA has long been underestimated. Interestingly, ABA emerges as an important player in arbuscular mycorrhiza and legume-rhizobium symbiosis. The plant's use of stress hormones like ABA in regulation of those interactions directly links the efficiency of these processes to the environmental status of the plant, notably during drought stress. Here we provide an overview of ABA interplay in beneficial associations of plants with microorganisms and propose ABA as a potential factor determining whether the investment in establishing the interaction is higher than the profit coming from it.
EN
The fucosyltransferase NodZ is involved in the biosynthesis of the nodulation factor in nitrogen-fixing symbiotic bacteria. It catalyzes α1,6 transfer of l-fucose from GDP-fucose to the reducing residue of the synthesized Nod oligosaccharide. We present the structure of the NodZ protein from Bradyrhizobium expressed in Escherichia coli and crystallized in the presence of phosphate ions in two crystal forms. The enzyme is arranged into two domains of nearly equal size. Although NodZ falls in one broad class (GT-B) with other two-domain glycosyltransferases, the topology of its domains deviates from the canonical Rossmann fold, with particularly high distortions in the N-terminal domain. Mutational data combined with structural and sequence alignments indicate residues of potential importance in GDP-fucose binding or in the catalytic mechanism. They are all clustered in three conserved sequence motifs located in the C-terminal domain.
|
2001
|
vol. 48
|
issue 2
359-365
EN
The establishment of the nitrogen-fixing symbiosis between rhizobia and legumes requires an exchange of signals between the two partners. In response to flavonoids excreted by the host plant, rhizobia synthesize Nod factors (NFs) which elicit, at very low concentrations and in a specific manner, various symbiotic responses on the roots of the legume hosts. NFs from several rhizobial species have been characterized. They all are lipo-chitooligosaccharides, consisting of a backbone of generally four or five glucosamine residues N-acylated at the non-reducing end, and carrying various O-substituents. The N-acyl chain and the other substituents are important determinants of the rhizobial host specificity. A number of nodulation genes which specify the synthesis of NFs have been identified. All rhizobia, in spite of their diversity, possess conserved nodABC genes responsible for the synthesis of the N-acylated oligosaccharide core of NFs, which suggests that these genes are of a monophyletic origin. Other genes, the host specific nod genes, specify the substitutions of NFs. The central role of NFs and nod genes in the Rhizobium-legume symbiosis suggests that these factors could be used as molecular markers to study the evolution of this symbiosis. We have studied a number of NFs which are N-acylated by α,β-unsaturated fatty acids. We found that the ability to synthesize such NFs does not correlate with taxonomic position of the rhizobia. However, all rhizobia that produce NFs such nodulate plants belonging to related tribes of legumes, the Trifolieae, Vicieae, and Galegeae, all of them being members of the so-called galegoid group. This suggests that the ability to recognize the NFs with α,β-unsaturated fatty acids is limited to this group of legumes, and thus might have appeared only once in the course of legume evolution, in the galegoid phylum.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.