Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  nanocząstki srebra
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
PL
Rosnąca oporność bakterii, zwłaszcza rosnących w biofilmach, na konwencjonalne antybiotyki jest przyczyną szerokich poszukiwań nowych środków terapeutycznych. Nanocząstki srebra, ze względu na udowodniony potencjał antybakteryjny, są intensywnie badane. Istnieje kilka metod syntezy nanosrebra, najbardziej przyjazna dla środowiska jest synteza biogeniczna. Nanocząstki srebra charakteryzują się mnogością wewnątrzkomórkowych celów działania. Mechanizm ich antybakteryjnej aktywności opiera się głównie na uszkodzeniu osłon bakteryjnych i indukcji reaktywnych form tlenu. Nanocząstki srebra, oprócz dużego potencjału antybakteryjnego, zdolne są do współdziałania z konwencjonalnymi antybiotykami, w ten sposób potęgowana jest ich aktywność. Wiele badań in vitro i in vivo wskazuje na toksyczność nanosrebra wobec Eukaryota, obiecujący jest zwłaszcza ich potencjał anty-nowotworowy. Powszechne użycie nanocząstek wymusza konieczność rygorystycznego monitoringu ich syntezy i stosowania.
EN
The growing resistance of bacteria, especially those living in biofilms, to conventional antibiotics causes a broad search for new therapeutic agents. Silver nanoparticles, due to their known antibacterial activity, are intensively studied. Among several methods of nanosilver synthesis, the most friendly is the biogenic "green" synthesis. The targets and mechanisms of action of silver nanoparticles are pleiotrophic, and involve mainly destruction of cellular envelopes and induction of reactive oxygen species. Nanosilver particles are also able to interact with conventional antibiotics, thus enhancing their antibacterial activity. The data obtained both in vivo and in vitro demonstrate the toxic effect of nanosilver on Eukaryota, including its antitumor potential. The broad usage of silver nanoparticles calls for a restricted monitoring of their production and application.
EN
Methods of producing nanoparticles, called nanotechnologies, have inspired lively interest over the recent years due to the broad possibilities for application of nanoparticles in numerous fields, including electronics, information technology, biotechnology, medicine, pharmacy, cosmetology and others. Nanoparticles are defined as particles which may occur in various shapes and which have at least one dimension smaller than 100 nm. Depending on the process of creation we can differentiate between natural nanoparticles occurring in the environment and designed nanoparticles, which are man-made. Designed nanoparticles are characterised by special physical properties which make them suitable for biomedical applications, among others. An example of such an application is the use of silver nanocomposites, which in a micronised form display a strong bacteriostatic and bactericidal effect. Graphene, the latest achievement of nanotechnology with unique mechanical and physical properties, is another material which raises much interest among researchers. The dynamic development of numerous directions in modern technologies based on nanotechnologies is an indisputable sign of progress. The discovery of the unique properties of nanomaterials opens wide possibilities for numerous applications; however, it also requires comprehensive research to ensure they are safe to use.
PL
Metody wytwarzania nanocząstek, zwane nanotechnologiami, wzbudzają w ostatnich latach żywe zainteresowanie dzięki szerokim możliwościom zastosowania ich produktów w wielu dziedzinach, w tym w elektronice, informatyce, biotechnologii, medycynie, farmacji, kosmetologii i innych. Nanocząstki są definiowane jako cząstki, które mogą występować w różnych kształtach i których przynajmniej jeden z wymiarów jest mniejszy niż 100 nm. W zależności od procesu powstawania wyróżnia się nanocząstki naturalne, występujące w środowisku, oraz nanocząstki projektowane, będące wytworem działalności człowieka. Nanocząstki projektowane cechują szczególne właściwości fizyczne, które między innymi warunkują ich zastosowanie biomedyczne. Przykładem może być zastosowanie nanokompozytów srebra, które w postaci zmikronizowanej wykazują silne działanie bakteriostatyczne i bakteriobójcze. Duże zainteresowanie badaczy wzbudza również grafen, najnowsze dzieło nanotechnologii, posiadający unikalne właściwości mechaniczne i fizyczne. Dynamiczny rozwój wielu kierunków nowoczesnych technologii opartych na nanotechnologiach jest niewątpliwym wyznacznikiem postępu. Odkrycie unikalnych właściwości nanomateriałów otwiera szerokie możliwości wielu zastosowań, ale jednocześnie wymaga kompleksowych badań zapewniających bezpieczeństwo ich użytkowania.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.