Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 17

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  nanocomposites
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Three nCo,N-TiO2 nanocomposites (where cobalt concentration index n = 1, 5 and 10 wt %) were prepared and investigated by magnetic resonance spectroscopy at room temperature. Ferromagnetic resonance (FMR) lines of magnetic cobalt agglomerated nanoparticle were dominant in all registered spectra. The relaxation processes and magnetic anisotropy of the investigated spin system essentially depended on the concentration of cobalt ions. It is suggested that the samples contained two magnetic types of sublattices forming a strongly correlated spin system. It is suggested that the existence of strongly correlated magnetic system has an essential influence of the photocatalytic properties of the studied nanocomposites.
EN
Novel CdS/BiOI heterojunction photocatalysts were successfully prepared by facile method. The as-prepared samples were characterized by transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction, the Raman spectroscopy, UV-vis diffuse reflectance spectra, the Fourier transform infrared spectra, and photoluminescence. It was found that CdS nanoparticles were uniformly distributed on the surface of BiOI microspheres. The photodegradation tests showed that the photocatalytic efficiency was increased at first and then decreased when further increasing CdS content in the nanocomposites. The highest activity was obtained by 3%-CdS/BiOI nanocomposites. The enhanced photocatalytic performances were attributed to the matched band potentials of CdS and BiOI, which resulted in the efficient separation of photogenerated electron-hole pairs. Based on the experimental results, a reasonable photocatalytic mechanism of CdS/BiOI photocatalysts was also proposed.
3
Content available remote

Hybrid Materials – Past, Present and Future.

100%
|
2015
|
vol. 1
|
issue 1
EN
Hybrid materials represent one of the most growing new material classes at the edge of technological innovations. Unique possibilities to create novel material properties by synergetic combination of inorganic and organic components on the molecular scale makes this materials class interesting for application-oriented research of chemists, physicists, and materials scientists. The modular approach for combination of properties by the selection of the best suited components opens new options for the generation of materials that are able to solve many technological problems. This review will show in selected examples how science and technological driven approaches can help to design better materials for future applications.
EN
Gas sensor material was prepared by encapsulation of functionalized single-walled carbon nanotubes (SWCNT) into a gas-permeable polymer poly(1-trimethylsilyl-1-propyne) (PTMSP). A phenylhydrazino group was used for the functionalization of SWCNTs to improve their solubility and compatibility with polymers. Syntheses were carried out in aqueous surfactant solutions and in pure phenylhydrazine without surfactant. Two different temperatures (24 and 50°C) and two surfactants (sodium dodecyl sulfate and tricaprylmethylammonium chloride - Aliquat®336) were compared. Functionalized SWCNTs were characterized by X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. Analyses showed that the synthesis at higher temperature in pure phenylhydrazine resulted in the highest functionalization yield. Phenylhydrazine itself proved to be a good solvent for SWCNTs. The functionalized nanotubes were soluble in organic solvents that under the same conditions were appropriate solvents for polymers. The sensitivity of functionalized SWCNT-PTMSP thin film composite to NO2 gas at room temperature was significantly higher than that of the similar sensor material containing the pristine SWCNTs. [...]
EN
The paper reports of synthesis and investigation of polymeric nanocomposites based on isotactic polypropylene and titanium dioxide nanoparticles PP+TiO₂ (PPT). The structure of the PPT nanocomposites was studied by scanning electron and atomic force microscopy. There was also studied the influence of the polarization process by corona discharge on the structure and photoluminescence properties of PPT nanocomposites. It was found that intensity of the photoluminescence after the polarization increases, and this depends on the concentration of titan dioxide nanoparticles in the polymer matrix. It was shown that rms roughness for non-polarized sample compositions is 60-100 nm, whereas for polarized samples after the corona discharge polarization, makes 20-40 nm, i.e. there takes place grinding of the structural elements. It is supposed that, in the composite there forms sufficiently high internal local field, due to the boundary charges, so under the influence of this field there were excited additional luminescent centers, and as a result, after the polarization there was observed the increase of luminescence intensity.
EN
Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.
EN
Nanocrystalline hydroxyapatite (n-HAp), which has low crystallinity, has attracted great attention due to its similarity to the inorganic part of human bone. Therefore, many studies have focused on creating new formulations combining n-HAp with some biopolymers, such as chitosan, in order to imitate biological bone tissue. The importance of chitosan and its derivatives in biomedical applications has grown significantly in the last three decades due to its biodegradability and renewable source. Besides, chitosan and its derivatives present excellent biocompatibility and biofunctionality, which make them promising materials in bone tissue engineering. In the present study, the chitosan was, first, extracted from the shell of the freshwater crab species Potamon algeriense following demineralization, deproteinization, decolouration (raw chitin) and deacetylation (chitosan) steps. Then, a novel composite based on n-HAp and extracted chitosan (CTS) with varying chitosan contents, from 5% to 20% (w/w), was synthesized and characterized for potential application in tissue regeneration. The obtained composites were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric analysis. The precipitated n-HAp/CTS nanocomposites similar to natural bone are promising composites for bone tissue engineering applications.
EN
Methods of producing nanoparticles, called nanotechnologies, have inspired lively interest over the recent years due to the broad possibilities for application of nanoparticles in numerous fields, including electronics, information technology, biotechnology, medicine, pharmacy, cosmetology and others. Nanoparticles are defined as particles which may occur in various shapes and which have at least one dimension smaller than 100 nm. Depending on the process of creation we can differentiate between natural nanoparticles occurring in the environment and designed nanoparticles, which are man-made. Designed nanoparticles are characterised by special physical properties which make them suitable for biomedical applications, among others. An example of such an application is the use of silver nanocomposites, which in a micronised form display a strong bacteriostatic and bactericidal effect. Graphene, the latest achievement of nanotechnology with unique mechanical and physical properties, is another material which raises much interest among researchers. The dynamic development of numerous directions in modern technologies based on nanotechnologies is an indisputable sign of progress. The discovery of the unique properties of nanomaterials opens wide possibilities for numerous applications; however, it also requires comprehensive research to ensure they are safe to use.
PL
Metody wytwarzania nanocząstek, zwane nanotechnologiami, wzbudzają w ostatnich latach żywe zainteresowanie dzięki szerokim możliwościom zastosowania ich produktów w wielu dziedzinach, w tym w elektronice, informatyce, biotechnologii, medycynie, farmacji, kosmetologii i innych. Nanocząstki są definiowane jako cząstki, które mogą występować w różnych kształtach i których przynajmniej jeden z wymiarów jest mniejszy niż 100 nm. W zależności od procesu powstawania wyróżnia się nanocząstki naturalne, występujące w środowisku, oraz nanocząstki projektowane, będące wytworem działalności człowieka. Nanocząstki projektowane cechują szczególne właściwości fizyczne, które między innymi warunkują ich zastosowanie biomedyczne. Przykładem może być zastosowanie nanokompozytów srebra, które w postaci zmikronizowanej wykazują silne działanie bakteriostatyczne i bakteriobójcze. Duże zainteresowanie badaczy wzbudza również grafen, najnowsze dzieło nanotechnologii, posiadający unikalne właściwości mechaniczne i fizyczne. Dynamiczny rozwój wielu kierunków nowoczesnych technologii opartych na nanotechnologiach jest niewątpliwym wyznacznikiem postępu. Odkrycie unikalnych właściwości nanomateriałów otwiera szerokie możliwości wielu zastosowań, ale jednocześnie wymaga kompleksowych badań zapewniających bezpieczeństwo ich użytkowania.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.