Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  nano zero-valent iron
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this paper, the ability of nZVI to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from multicomponent aqueous solutions was investigated through batch experiments. The experimental data were fitted to a second-order kinetic model based on solid capacity. The data for copper and lead fitted well into the second-order kinetic model, thus suggesting that the adsorption had a physical character. The values of the removal ratio and the second-order rate constant indicated that the order of adsorption priority of nZVI was as follows: Pb>Cu>Zn>Cd>Ni. The adsorption isotherm data were described by the most conventional models (Henry, Freundlich, and Langmuir). Equilibrium tests showed that copper and zinc were removed from the solution by adsorption processes, i.e., complexation and competitive adsorption. The test results suggested that the removal processes using nZVI are more kinetic than equilibrium. The study demonstrated that nZVI is favorable reactive material; however, comprehensive investigation should be performed for further in situ applications in PRB technology.
EN
Batch studies were conducted to investigate the potential of 3-aminopropyltriethoxysilane modified nano zero-valent iron (APS-NZVI) to adsorb two dyes (acid brilliant scarlet GR and reactive brilliant red K-2BP) from aqueous solution. APS-NZVI showed good adsorption performance for two dyes. Under the adsorption conditions of pH 4.5, initial concentration was 100 mg/L, and time=4h, the maximum adsorption capacities of APS-NZVI were 121.06 mg/g for acid brilliant scarlet GR and 191.5 mg/g for reactive brilliant red K-2BP, respectively. The results revealed that the adsorption behavior of the dyes on the nano-particles fitted well with the Langmuir model and the sorption kinetics fits well the pseudo-second-order rate equation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.